
THE GOOD, THE BAD,
AND THE UGLY

What Happened to Unicode and PHP 6

Andrei Zmievski ! PHP Community Conference

ABOUT 1 YEAR AGO…

“Hello PHP 5.4, open for all new stuff.” — Jani

TIME OF DEATH

March!11,!11:09:37!2010 GMT

5 YEARS EARLIER…

PHP 5.0.0

released in July 2004

5 YEARS EARLIER…

Firefox 1.0

released in November 2004

5 YEARS EARLIER…

Chrome

not even a twinkle in Google’s eye

5 YEARS EARLIER…

Unicode

version 4.0.1

WHAT IS UNICODE?

and why do I need it?

…is a computing industry
standard for the consistent

encoding, representation and
handling of text expressed in most

of the world's writing systems.

Unicode

http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Technical_standard
http://en.wikipedia.org/wiki/Technical_standard
http://en.wikipedia.org/wiki/Technical_standard
http://en.wikipedia.org/wiki/Technical_standard
http://en.wikipedia.org/wiki/Character_encoding
http://en.wikipedia.org/wiki/Character_encoding
http://en.wikipedia.org/wiki/Character_(computing)
http://en.wikipedia.org/wiki/Character_(computing)
http://en.wikipedia.org/wiki/Writing_system
http://en.wikipedia.org/wiki/Writing_system

provides a unique number
for every character:

no matter what the platform,

no matter what the program,

no matter what the language.

Unicode

UNICODE STANDARD

! Developed by the Unicode Consortium

! Covers all major living scripts

! Version 6.0 has 109,000+ characters

! Capacity for 1 million+ characters

! Widely supported by standards & industry

FEATURES

! Rich property set for every character

! Standard, unified encodings: UTF-8/16/32

! Extensive rules and documents for implementation

! Everything works, as long as everyone follows the rules

! Unicode simplifies development

! Unicode does not fix all internationalization problems

UNICODE != I18N

TIME FORMATS

! USA: !"##$%&'&

! France: ()&##

! Japan: ()##$

! Don’t forget to identify the time zone

CURRENCY

! Symbol placement

! Symbol length (1-15)

! Number width

! Number precision:
‣ Spain, Japan – 0

‣ Mexico, Brazil – 2

‣ Egypt, Iraq – 3

*+$,(-&.!

(-&.!/0)1$2

(-,.!2

3(-.

SORTING

! Swedish: z < ö

! German: ö < z

! Dictionary: öf < of

! Phonebook: of < öf

! Upper-first: A < a

! Lower-First: a < A

! Contractions: H < Z, but CH > CZ

! Expansions: OE < Œ < OF

CLDR

! Hosted by Unicode Consortium

! Latest release: December 2010 (CLDR 1.9)

! 516 locales, with 187 languages and 166 territories

WHY WEB NEEDS UNICODE

MOJIBAKE

もじばけ

MOJIBAKE

noun: phenomenon of incorrect, unreadable
characters shown when computer software
fails to render a text correctly according to
its associated character encoding.

MOJIBAKE

MOJIBAKE

I UNICODE,
YOU UNICODE
♥
♥

I UNICODE,
YOU UNICODE

|
|

Helgi

Helgi

Helgi

Þormar

Þorbjörnsson

ISLTHORP

Mr. SECURITY OVERRIDE

or

Joel

Joël

Joël

JoÃ«l

JoÃ«l

WEAKEST LINK
PRINCIPLE APPLIES

WHY PHP NEEDS UNICODE

PHP

! Essential Web platform

! Since Web needs Unicode…

! …so does PHP

! Do not want to be the weakest link

THE PROJECT

THE PROJECT

! Launched in February 2005 by me at Yahoo

! Small group from Yahoo, Zend, and PHP development
community

! Design before code

! Everywhere:

‣ in the engine

‣ in the extensions

‣ in the API

UNICODE SUPPORT

UNICODE SUPPORT

! Native and complete

‣ no hacks

‣ no mishmash of external libraries

‣ no missing locales

‣ no language bias

ICU LIBRARY

✓ Unicode Character Properties

✓ Unicode String Class & text

processing

✓ Text transformations

(normalization, upper/lowercase,

etc)

✓ Text Boundary Analysis

(Character/Word/Sentence Break

Iterators)

✓ Encoding Conversions for 500+

legacy encodings

✓ Language-sensitive collation

(sorting) and searching

✓ Unicode regular expressions

✓ Thread-safe

✓ Formatting: Date/Time/

Numbers/Currency

✓ Cultural Calendars & Time

Zones

✓ (230+) Locale handling

✓ Resource Bundles

✓ Transliterations (50+ script

pairs)

✓ Complex Text Layout for Arabic,

Hebrew, Indic & Thai

✓ International Domain Names

and Web addresses

✓ Java model for locale-

hierarchical resource bundles.

Multiple locales can be used at a

time

International Components for Unicode

THE PROJECT

! Development was in a separate repository

! Merged into PHP tree once the basics were working

! Initially slated for 5.x

! Extensive changes necessitated a major version bump

PHP 6 = PHP 5 + Unicode

PHP 5 = PHP 6 - Unicode

Unicode = PHP 6 - PHP 5

PHP 6

PHP 6

6

! Unicode

‣ text

‣ default for literals, etc

! Binary

‣ bytes

‣ everything ∉ Unicode type

STRING TYPES

PHP

scripts

sc
ri
p
t
e
n
co

d
in

g

streams

st
re

a
m

-s
p
e
ci

fi
c

e
n
co

d
in

g
s

Conversions
Dataflow

fi
le

sy
ste

m

e
n
co

d
in

g

filesystem

HTTP output

encoding

responseruntime encoding

Unicode
strings

binary
strings

request
HTTP input

encoding

STRINGS

! String literals are Unicode

! String offsets work on code points

,456$7$8大学89: : ;;$-$<=>?$@=AB54

?<C=$,456D(E9: : ;;$6?4FG5$A4$学$

,456D#E7HサH9: ;;$IFGG$456ABJ$A4$B=K$サ学

IDENTIFIERS

! Unicode identifiers are allowed

<GL44$コンポーネント$M$

$$$IFB<5A=B$!"#$$%&'()NO: : M$&&&$P
$$$IFB<5A=B$!"#$$%&'()::NO$$M$&&&$P
$$$IFB<5A=B$!"#$%&'NO: : : $$$$M$&&&$P
P$

,プロバイダ7L66LQNO9

,プロバイダDHָרַעְיולוּחַ$שָׁנהHE$7$B?K$コンポーネント9

FUNCTIONS
! Functions understand Unicode text and apply

appropriate rules
! i.e. case manipulation

,456$7$4565=F@@?6N8IFRSLGG8O9: ;;$6?4FG5$A4$!"##$%&&

,456$7$4565=G=K?6N8TUVVWT8O9: ;;$6?4FG5$A4$'())*+$

TRANSLITERATION
,BLX?4$7$8$
$$!0$"#$
$$!0$$%$
$$たけだ0$まさゆき$

$$おおはら0$まなぶ$

$$YZ[\]^_`0$abc]bd$
$$eZfg[_`0$hij[_k$
$$lmnopqrstuvtw0$xornyvtw$
$$xotz{|}ptu0$Uv~�Ä$
89$
,6$7$4565=5A5G?N456Å56LB4GA5?6L5?N,BLX?40$8ÇBQ80$8ÉL5AB8OO9

ÑAX0$ÑFJ4LX
ÑAX0$'Q?=BJCQA
ÖLÜ?>L0$'L4LQFÜA
á=CL6L0$'LBLSF
Ñ=6SLà?â0$'ACLAG
ä=ãQ6?â0$ÇB>6?å
äL@C?5ãç@=FG=40$ÖC?ç@CAG=4
ÖC?=>é6è5=F0$êGëBí

PECL/INTL

FEATURES
! Locales
! Collation
! Number and Currency Formatters
! Date and Time Formatters
! Time Zones
! Calendars
! Message Formatter
! Choice Formatter
! Resource Handler
! Normalization

COLLATION

,456ABJ4$7$L66LQN$
$$$$$$$$8<=5?80$8<ì5?80$8îì5?80$8<=5ë80$
$$$$$$$$8î=5ë80$8<ì5ë80$8îì5ë80$8<=5?68O9$
,<=GG7B?K$î=GGL5=6N8I6Åïñ8O9$
,<=GGóò4=65N,456ABJ4O9

<=5?
<ì5?
îì5?
<=5ë
î=5ë
<ì5ë
îì5ë
<=5?6

sorting

result

NUMBER FORMATTING

! ôFXS?6ï=6XL55?6""öêîõ'ÇÉ
123456.789

! ôFXS?6ï=6XL55?6""î*ññêôîú
$123,456.79

! ôFXS?6ï=6XL55?6""áñöõôÇÉ
123,457th

! ôFXS?6ï=6XL55?6""+%êÉÉá*Ö
one hundred and twenty-three thousand, four hundred
and fifty-six point seven eight nine

(-.!/)&1ùûAB?BÅ*+

MESSAGE FORMATTING

,@L55?6B7üáB$M#0>L5?0IFGGP$Q=F$6?<?Aâ?>
$$$$$$$$$$$$M(0BFXS?60†0††#&##P$?XLAG4&°9
,L6J4$7$L66LQN5AX?NO0$((ù!O9$
,IX5$7$B?K$'?44LJ?ï=6XL55?6N¢?BÅ*+£0$,@L55?6BO9
?<C=$,IX5óòI=6XL5N,L6J4O9

áB$ÖF?4>LQ0$ô=â?XS?6$--0$-##1$Q=F$6?<?Aâ?>$
(0(ù!&##$?XLAG4&

with modifiers

result

POSTMORTEM

WHAT WENT RIGHT

1. RAISED AWARENESS

! Spoke at multiple conferences about the project

‣ including Unicode Conference

! Shoved Unicode down people’s throats at every
opportunity

2. CHOSE THE RIGHT TECH

! ICU library had everything we needed

! Low- and high-level functionality

! Good support from its developers

3. UNIT TESTS

! Every function handling strings had to be ported

! Unit tests showed us where things broke

! Also easy to track progress

4. PECL/INTL EXTENSION

! A lot of i18n/l10n functionality in a self-contained
extension

! Ensuring that it worked with PHP 5

5. CODE SEGREGATION

! Proof-of-concept developed by only a few people

! Faster decisions, iteration, development

! Things slowed down after merging into the main tree

‣ but was necessary to spread the workload

WHAT WENT RONG

1. CHOICE OF UTF-16

Thought to be the best compromise

UTF-8

! Backward-compatible with ASCII

! Avoids complications of endianness

! Dominant UTF encoding for the Web

! Supported in a lot of libraries, APIs, etc

UTF-8, BUT…

! Variable-length encoding (1-4 bytes)

! Uses 3 bytes for BMP code points > U+07FF

! Not all byte sequences are valid

! ICU did not have many UTF-8 APIs (at the time)

‣ on-the-fly conversion is necessary

UTF-32

! Uses exactly 4 bytes for each code point

‣ directly indexable!

http://en.wikipedia.org/wiki/Code_point
http://en.wikipedia.org/wiki/Code_point

UTF-32, BUT...

! Uses exactly 4 bytes for each code point

‣ 4x the size of UTF-8 for majority of languages

! Only affordable by people from rich oil countries

! Still needs conversion to UTF-16 when using ICU

! Endianness

http://en.wikipedia.org/wiki/Code_point
http://en.wikipedia.org/wiki/Code_point

UTF-16

! “65,536 code points should be enough for everyone…”

! 2 bytes to represent all of BMP (U+0 to U+FFFF)

‣ directly indexable in that plane

! Internal encoding of ICU

UTF-16, BUT…

! Requires surrogate pairs for code points > U+FFFF

‣ still variable-length

! 2x the size of UTF-8 for Latin, Greek, Cyrillic, Armenian,
Hebrew, Arabic and other scripts

! Can’t be manipulated by normal C string handling

! Endianness

http://en.wikipedia.org/wiki/Latin_alphabet
http://en.wikipedia.org/wiki/Latin_alphabet
http://en.wikipedia.org/wiki/Greek_alphabet
http://en.wikipedia.org/wiki/Greek_alphabet
http://en.wikipedia.org/wiki/Cyrillic_alphabet
http://en.wikipedia.org/wiki/Cyrillic_alphabet
http://en.wikipedia.org/wiki/Armenian_alphabet
http://en.wikipedia.org/wiki/Armenian_alphabet
http://en.wikipedia.org/wiki/Hebrew_alphabet
http://en.wikipedia.org/wiki/Hebrew_alphabet
http://en.wikipedia.org/wiki/Arabic_alphabet
http://en.wikipedia.org/wiki/Arabic_alphabet

CHOICE OF UTF-16

! Thought that CJK languages would benefit from UTF-16

! Primary driver was the ICU APIs

! Problems: no direct indexing, many conversions

! Would probably choose UTF-8, if started over

‣ no need for decoding/encoding on the periphery

‣ can be used by C-based libraries

2. CRUCIAL CODE LAGGED

! PDO (and native DB extensions)

! filter

! proper substring search (collation-based)

! some ?§5;45LB>L6> functionality

2. CRUCIAL CODE LAGGED

3. LACK OF MINDSHARE

3. LACK OF MINDSHARE

! Probably <10 people who understood the intricacies of
the Unicode and ICU

! In the end, implementation deemed too technically
difficult

! People were bored converting large chunks of already
working code

4. DELAYED NEW FEATURES

5. MEA CULPA

END GAME

RE-ORG

! PHP 6 trunk was moved to a branch

! PHP 5.4 became the trunk

! Kick-started development of new features

! Some clean-ups and improvements from 6 back-ported
to 5.4

PEOPLE MATTER

! The project ran out of steam

‣ PHP development culture means that people work on
what they’re interested in

‣ Clearly, the Unicode/i18n implementation wasn’t
interesting enough to be viable

INTERNALS

“Because it’s nearly impossible to

participate on Internals if your

poo-throwing arm isn’t strong.”

— @coates

PERSISTENCE

“Those with talent, competence, energy,

and good ideas over a period of time

tend to be the main drivers behind PHP

development.”

— me

PERSISTENCE

“Those with talent, competence, energy,

and good ideas over a period of time

tend to be the main drivers behind PHP

development.”

— me

and who outlast the rest

PROGRESS

! No development on the Unicode branch

! No visible effort to develop alternatives

FUTURE?

! Lighter, gentler implementations?

‣ mbstring is clunky

‣ separate Unicode String class would also be clunky

! Open field for someone with a great idea, persistence,
and people skills

STEPPING AWAY

! Invalidation of several man-years of hard work is
discouraging

! Did not feel like pushing the project up the hill again

! Working on more fun stuff these days

LESSONS LEARNED

! Rewriting large existing code base is hard

! Making people do tedious stuff is hard

‣ make it interesting for them (game-like)

! Waiting for results of long iterations is hard

‣ short, results-oriented projects (if possible)

! Stay committed

FINITA LA COMEDIA

http://joind.in/3349 ! http://zazzle.com/andreiz

