THE GOOD, THE BAD,

\What Happened to Unicode and PHP &6

Andrei Zmievski % PHP Community Conference



ABOUT 1 YEAR AGO...

“Hello PHP 5.4, open for all new stuff.” — Jani




TIME OF DEATH

March 11, 11:09:37 2010 GMT




5 YEARS EARLIER...

PHP 5.0.0
released in July 2004




5 YEARS EARLIER...

Firefox 1.0
released in November 2004




5 YEARS EARLIER...

Chrome
not even a twinkle in Google’s eye




5 YEARS EARLIER...

Unicode
version 4.0.1




WHAT IS UNICODE?

and why do | need it?




UNICODE

..is @a computing industry
standard for the consistent
encoding, representation and
handling of text expressed in most
of the world's writing systemes.



http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Technical_standard
http://en.wikipedia.org/wiki/Technical_standard
http://en.wikipedia.org/wiki/Technical_standard
http://en.wikipedia.org/wiki/Technical_standard
http://en.wikipedia.org/wiki/Character_encoding
http://en.wikipedia.org/wiki/Character_encoding
http://en.wikipedia.org/wiki/Character_(computing)
http://en.wikipedia.org/wiki/Character_(computing)
http://en.wikipedia.org/wiki/Writing_system
http://en.wikipedia.org/wiki/Writing_system

UNICODE

provides a unique number
for every character:

no matter what the platform,
no matter what the program,

no matter what the language.




UNICODE STANDARD

» Developed by the Unicode Consortium
+ Covers all major living scripts

+ Version 6.0 has 109,000+ characters

+ Capacity for 1 million+ characters

+ Widely supported by standards & industry




FEATURES

+ Rich property set for every character
+ Standard, unified encodings: UTF-8/16/32
+ Extensive rules and documents for implementation

+ Everything works, as long as everyone follows the rules




UNICODE != 118N

+ Unicode simplifies development

+ Unicode does not fix all internationalization problems




TIME FORMATS

<+ USA: 4:00 P.M.
< France: 16.00
+Japan: 16600

+ Don’t forget to identify the time zone




CURRENCY

+ Symbol placement

US $12.34
+ Symbol length (1-15) 12.345,67 €

» Number width 12$34€

+ Number precision: k.

» Spain, Japan -0
» Mexico, Brazil -2

» Egypt, lraqg =2




SORTING

» Swedish: Z <0

» German: 0<Z

» Dictionary: of < of
Phonebook: of < of
Upper-first: A<a

* Lower-First: a<A

» Contractions: H < Z, but Cl

Expansions: OE < & < OF




» Hosted by Unicode Consortium

» Latest release: December 2010 (CLDR 1.9)

» 516 locales, with 187 languages and 166 territories




WHY WEB NEEDS UNICODE




MOJIBAKE

31 8224%;




O L P O Beieeds b W

) - & - y N : |
’ v g ) " . N i eeme v Yre a ooy
- .!:. . ) =y Tew ’.' 0-:,‘ L B o . e

Q N o AJ.r\ Rl il ot g N1 “:_:0..-0 bt

e . - P N N—— PR W— S - -

-':1;..:){)_ e F F e f":_

MOJIBAKE L

e w

Q
'

1
v
-
14
L)

»

D

0

8 B0
1t
e
i
.
15
e
~
'
(2
io
2

o
.
'
:
v
:

noun: phenomenon of incorrect, unreadable
characters shown when computer software Q Goameent deecs WelaDaow sieng o
fails to render a text correctly according to

R . . ~! "> Al Ne » e Fage )

its associated character encoding.
Q Conate prmcan . Ry O 4 A
Q e SOT N7 svyesa’ Page
Q - 1 4 M * Mty » =4 va




'~ Dv ofUs for ey alrocsl snlonad I - Mosla

ohnt adeb-a soachsa wi aaldhca Avea 10dia o~ Al
AVAG-00AA Urallaa 10403 1uiAl.

ohat adehi-a avsesa Ada Sheid 1icda AL féia Age
A0S0-00648 vetdioa f0ial 16i6i: altia wozd. eecd
&u 16tue alhia b

MOJIBAKE




o ISA SRS
AN
et LI L
L W N e
N YVANA

LRI RS B
Lphrrif—u
AN GRAEA -
MArIAE
AN

 eThdBNg U0 N N DN M TR DAL N Sae-1S

MO IBAKE

RN A° A2 MR UTERUTTLEE N UL R AT B
sl APAr el e ke SASAITAN AL B M

ee-ta—aCE-a) °
8308, B-AA1 Vi M Ve id. . MEZAAEA A48 EA LA C1Y WikipadialYineiel

AP m)yps nDp»

iy (VR MR o e S :

IR AT A% e 'Y » Qi

* DM 1400 W B0 R MMM YA g. s..g"} ::‘.‘ ;':1.
AagktA™S60 N 4 cPN LN W 00,

Ll LB iy

F R Yarl
1180 A B N
1260 =%l B3
13 MOVE™ SLaR A7 AT AIASA 2 4RI, CuTEe "M 07 RIONS -0 « Ll IR L

PR Lk o B BORRMRSRAS s
J0.008108 W

a »a) *aZya

AVARSAALMARA LA AT AN NACAEA L0 S0 00/ 47«08 - 304000 %
€2 @50 00 N N 0N GAYHE BN

el 2 V.5 veél -Al
* M M SRR A8 1000 000 Son- S SANGALALASE A5 -~



| @ UNICODE,

YOU @ UNICODE




| | UNICODE,

YOU | UNICODE










HELGI
PORMAR

PORBJORNSSON




ISLTHORP

OR

MR. SECURITY OVERRIDE




HP COMMUNITY

CONFERENCE
| 24



















WEAKEST LINK

PRINCIPLE APPLIES




WHY PHP NEEDS UNICODE




+ Essential Web platform

+ Since Web needs Unicode...
% ...s0 does PHP

+ Do not want to be the weakest link




THE PROJECT




THE PROJECT

+ Launched in February 2005 by me at Yahoo

+ Small group from Yahoo, Zend, and PHP development
community

+ Design before code




UNICODE SUPPORT

+ Everywhere:
» in the engine
» in the extensions

» in the API




UNICODE SUPPORT

+ Native and complete
» no hacks
» no mishmash of external libraries
» no missing locales

» no language bias




|CU LIBRARY

International Components for Unicode

v Unicode Character Properties

v Unicode String Class & text
processing

v Text transformations
(normalization, upper/lowercase,
etc)

v Text Boundary Analysis
(Character/Word/Sentence Break
Iterators)

v Encoding Conversions for 500+
legacy encodings

v Language-sensitive collation
(sorting) and searching

v Unicode regular expressions
v Thread-safe

v Formatting: Date/Time/
Numbers/Currency

v Cultural Calendars & Time
Zones

v (230+) Locale handling
v Resource Bundles

v Transliterations (50+ script
pairs)

v Complex Text Layout for Arabic,
Hebrew, Indic & Thai

v International Domain Names
and Web addresses

v Java model for locale-
hierarchical resource bundles.
Multiple locales can be used at a
time




THE PROJECT

+ Development was in a separate repository
+ Merged into PHP tree once the basics were working
+ Initially slated for 5.x

+ Extensive changes necessitated a major version bump




PHP 6 = PHP 5 + UNICODE




PHP 5 = PHP 6 - UNICODE




UNICODE = PHP 6 - PHP 5










STRING TYPES

+ Unicode

» text

» default for literals, etc
+ Binary

» bytes

» everything ¢ Unicode type




CONVERSIONS
DATAFLOW

PHP

Unicode
strings

runtimeﬂencoding

request |! response

HTTP input binary HTTP output
encoding strings encoding

sCripts filesystem




STRINGS

+ String literals are Unicode

+ String offsets work on code points

, // 2 code points
echo $str[1]; // result is ¥ 3
' '‘ty'; // full string is now TUF




IDENTIFIERS

+ Unicode identifiers are allowed

class AVR—xXRV b {

function AK\% <¥5°b%() St
function Hleaurgy sCearzear() { ...

function agayar() { ...

IN1% = array();
INAF 'Y mO1y1'] = new =




FUNCTIONS

+ Functions understand Unicode text and apply
appropriate rules

+ i.e. case manipulation




TRANSLITERATION

$names =
U, =4

D;.
2, ws

ciFe, FSHE
BRES, TR
[opbayeB, Muxaun
Ko3bipeB, AHApew
KapetlomouAoc, OedP1LAOC
Ocobwpatou, EAEvn

= strtotitle(str_transliterate($names, "Any", "Latin"));

Gim, Gugsam

Gim, Myeonghyi

Takeda, Masayuki

Oohara, Manabu

Gorbacev, Mihail

Kozyrev, Andrej
Kaphetzopoulos, Thedphilos
Theodoratou, Eléne




PECL/INTL




FEATURES

Locales
Collation
Number and Currency Formatters
Date and Time Formatters
» Time Zones
Calendars
Message Formatter
Choice Formatter
Resource Handler

Normalization




COLLATION

sorting

$strings = array(
"cote", "cote", "Cote", "coteée",
"Coté", "cote", "Coété", "coter");
$coll = new Collator("fr_FR");

$coll->sort($strings);

result




NUMBER FORMATTING

123456.789 1in en US

* NumberFormatter: :DECIMAL
123456.789

* NumberFormatter: : CURRENCY
$123,456.79

* NumberFormatter: :0RDINAL
123,457th

* NumberFormatter: :SPELLOUT

one hundred and twenty-three thousand, four hundred
and fifty-six point seven eight nine




MESSAGE FORMATTING

with modifiers

$pattern = “On {0,date,full} you received
{1, number, #,##0.00} emails.”;
$args = array(time(), 1184);
$fmt = new MessageFormatter(‘en US’, $pattern);
echo $fmt->format($args);

result

On Tuesday, November 22, 2007 you received
1,184.00 emails.




POSTMORTEM




WHAT WENT RIGHT




1. RAISED AWARENESS

+ Spoke at multiple conferences about the project
» including Unicode Conference

+ Shoved Unicode down people’s throats at every
opportunity




2. CHOSE THE RIGHT TECH

+ ICU library had everything we needed
+ Low- and high-level functionality

+ Good support from its developers




3. UNIT TESTS

+ Every function handling strings had to be ported
+ Unit tests showed us where things broke

+ Also easy to track progress




4. PECL/INTL EXTENSION

+ A lot of i18n/l10n functionality in a self-contained
extension

+ Ensuring that it worked with PHP 5




5. CODE SEGREGATION

+ Proof-of-concept developed by only a few people
+ Faster decisions, iteration, development
+ Things slowed down after merging into the main tree

» but was necessary to spread the workload




WHAT WENT RONG




1. CHOICE OF UTF-16

Thought to be the best compromise




+ Backward-compatible with ASCII

+ Avoids complications of endianness

+ Dominant UTF encoding for the Web

+ Supported in a lot of libraries, APIs, etc




UTF-8, BUT...

+ Variable-length encoding (1-4 bytes)

+ Uses 3 bytes for BMP code points > U+07FF

+ Not all byte sequences are valid

+ |CU did not have many UTF-8 APIs (at the time)

» on-the-fly conversion is necessary




+ Uses exactly 4 bytes for each code point

» directly indexable!



http://en.wikipedia.org/wiki/Code_point
http://en.wikipedia.org/wiki/Code_point

UTF-32, BUT...

+ Uses exactly 4 bytes for each code point
» 4X the size of UTF-8 for majority of languages
+ Only affordable by people from rich oil countries

+ Still needs conversion to UTF-16 when using ICU

+» Endianness



http://en.wikipedia.org/wiki/Code_point
http://en.wikipedia.org/wiki/Code_point

+ “65,536 code points should be enough for everyone...”
+ 2 bytes to represent all of BMP (U+0 to U+FFFF)

» directly indexable in that plane

+ Internal encoding of ICU




UTF-16, BUT...

+ Requires surrogate pairs for code points > U+FFFF
» still variable-length

+ 2X the size of UTF-8 for Latin, Greek, Cyrillic, Armenian,
Hebrew, Arabic and other scripts

+ Can’t be manipulated by normal C string handling

+» Endianness



http://en.wikipedia.org/wiki/Latin_alphabet
http://en.wikipedia.org/wiki/Latin_alphabet
http://en.wikipedia.org/wiki/Greek_alphabet
http://en.wikipedia.org/wiki/Greek_alphabet
http://en.wikipedia.org/wiki/Cyrillic_alphabet
http://en.wikipedia.org/wiki/Cyrillic_alphabet
http://en.wikipedia.org/wiki/Armenian_alphabet
http://en.wikipedia.org/wiki/Armenian_alphabet
http://en.wikipedia.org/wiki/Hebrew_alphabet
http://en.wikipedia.org/wiki/Hebrew_alphabet
http://en.wikipedia.org/wiki/Arabic_alphabet
http://en.wikipedia.org/wiki/Arabic_alphabet

CHOICE OF UTF-16

+ Thought that CJK languages would benefit from UTF-16
+ Primary driver was the ICU APIs

+ Problems: no direct indexing, many conversions

+ Would probably choose UTF-8, if started over

» no need for decoding/encoding on the periphery

» can be used by C-based libraries




2. CRUCIAL CODE LAGGED




2. CRUCIAL CODE LAGGED

+ PDO (and native DB extensions)
+ filter
+ proper substring search (collation-based)

+ some ext/standard functionality




3. LACK OF MINDSHARE




3. LACK OF MINDSHARE

+ Probably <10 people who understood the intricacies of
the Unicode and ICU

+ In the end, implementation deemed too technically
difficult

+ People were bored converting large chunks of already
working code




4. DELAYED NEW FEATURES




5. MEA CULPA




END GAME




RE-ORG

+ PHP 6 trunk was moved to a branch
+ PHP 5.4 became the trunk
+ Kick-started development of new features

+ Some clean-ups and improvements from 6 back-ported
to 5.4




PEOPLE MATTER

+ The project ran out of steam

» PHP development culture means that people work on
what they’re interested in

» Clearly, the Unicode/i18n implementation wasn’t
interesting enough to be viable




INTERNALS

“Because it’s nearly impossible to

participate on Internals if your

poo-throwing arm isn’t strong.”
— (@coates




PERSISTENCE

“Those with talent, competence, energy,
and good ideas over a period of time
tend to be the main drivers behind PHP
development.”

— me




PERSISTENCE

“Those with talent, competence, energy,
and good ideas over a period of time

and who outlast the rest

tend to be the main drivers behind PHP
development.”
— me




PROGRESS

+ No development on the Unicode branch

+ No visible effort to develop alternatives




FUTURE?

+ Lighter, gentler implementations?
» mbstring is clunky
» separate Unicode String class would also be clunky

+ Open field for someone with a great idea, persistence,
and people skills




STEPPING AWAY

+ Invalidation of several man-years of hard work is
discouraging

+ Did not feel like pushing the project up the hill again

+ Working on more fun stuff these days




LESSONS LEARNED

+ Rewriting large existing code base is hard

+ Making people do tedious stuft is hard

» make it interesting for them (game-like)

+ Waiting for results of long iterations is hard
» short, results-oriented projects (if possible)

+ Stay committed




FINITA LA COMEDIA

http://joind.in/3349 < http://zazzle.com/andreiz



