VIM for (PHP)
Programmers

Andrei Zmievski
Outspark, Inc

ZendCon — September 17,2008

learn how to get he

:help is your frienc

help

p effectively

use CTRL-V before a CTRL sequence command

use i and v _prefixes to get help for CTRL
sequences in Insert and Visual modes

use CTRL-] (jump to tag) and CTRL-T (go back)

in help window

intro.

how well do you know vim’s language!

what is the alphabet!?

look at your keyboard
can you name what every key does!
modes - what are they?

how many do you know!?

now many do you use!

intro

if you don’t like the language, change it

example: how do you quit vim quickly?

ZZ (exit with saving)
ZQ (exit without save)
or

cnmap ,w :X<CR>
tnmap ,q :ql!<CR>

tip: set showcmd to see partial commands as
you type them

4

where am 17

How do you tell where you are?

~

l

2

simple - CTRL-G

detailed - gCTRL-G

do yourself a favor and set ruler

shows line, column, and percentage in status line

or configure it however you want with
‘rulerformat’

moving

do you us h/j/k/1 for moving?
or are you stuck in GUlarrowy world?
if you are, re-learn

save yourself countless miles of movement
between home row and arrows

4

moving

How do you move to:

~

l

e

¢

2

start/end of buffer! gg and G

line n! nG or ngg

n% into the file! n%

the first non-blank character in the line? *
first non-blank character on next line? <CR>

first non-blank character on previous line! —

marks

we can bookmark locations in the buffer

m<letter> sets mark named <letter> at
current location

“<letter> jumps precisely to that mark
‘<letter> jumps to the line with the mark
lowercase letter: mark is local to the buffer

uppercase letter: mark is global, your buffer will
be switched to the file with the mark

:marks shows you your current marks

4

marks

~ marks are very handy for changing text
~ set a mark (let’s say ma)
~ then you can do:
~ C a - change text from cursor to mark a
~ d a - delete text from cursor to mark a

~ ='a - reformat lines from current one to the one
with mark a

marks

et’s say you jump somewhere

now do you go back!?

N

moves you between the last two locations
you can set -~ (the context mark) explicitly:
~ m , jump elsewhere, then come back with =~

tip: CTRL-0 and CTRL-I move between
positions in the full jump history, but can’t be
used as motions

‘. and " . - jump to the line or exact location of
the last modification

insert

- gi - incredibly handy
~ goes to Insert mode where you left it last time

~ scenario: edit something, exit Insert, go look at
something else, then gi back to restart editing

insert

4

Some more goodies:

~

CTRL-Y and CTRL-E (avoid work if you can)

~ inserts chars from above or below the cursor

CTRL-A (oops, i want to do that again)

- inserts previously inserted text

CTRL-R=<expr> (built-in calculator)

~ inserts anything vim can calculate

CTRL-T and CTRL-D (tab and de-tab)

~ inserts or deletes one shiftwidth of indent at the start of
the line

delete

set your <Backspace> free

:set backspace=start,indent,eol

lets you backspace past the start of edit, auto-
indenting, and even start of the line

search

searching is essential
movement and information
how do you search?
£f/F/t/T anyone!

how about * and #!?

search

Search within the line;

~

f/F<char> jumps to the first <char> to the
right/left and places cursor on it

t/T<char> jumps does the same, but stops
one character short of it

df: - delete text from cursor to the first ; to
the right

cT$ - change text from cursor up to the first
$ to the left

4

search

often you want to find other instances of word
under the cursor

~ */# - find next/previous instance of whole word
~ g*/g# - find next/previous instance of partial word
or find lines with a certain word:

~ [T and]I - list lines with word under the cursor

~ more convenient to use a mapping to jump to a line:

:map ,f [I:let nr = input("Which one: ")<Bar>exe
"normal " . nr ."[\t"<CR>

search

of course, there’s always regexp search
/<pattern> - search forward for <pattern>
?<pattern> - search backward for <pattern>

n repeats the last search

N repeats it in the opposite direction

vim regexp language is too sophisticated to be
covered here

search

4

Control your search options
~ :set wrapscan - to make search wrap around

~ :set incsearch - incremental search,<Enter>
accepts, <Esc> cancels

~ :set ignorecase - case-insensitive search, or use
this within the pattern:

~ \cC - force case-insensitive search

~ \C - force case-sensitive search

search

~ remember that every search/jump can be used
as a motion argument

- d/"# - delete everything up to the next
comment

- y/"class/;?function - copy everything from
current point to the first function before the

first class

replace

: [range]s/<pattern>/<replace>/{flags}
is the substitute command

used mainly with range addresses

range addresses are very powerful (read the
manual)

but who wants to count out lines and do
something like : -23, "ts/foo/bar/

in reality you almost always use a couple of
shortcuts and Visual mode for the rest

replace

~ useful range addresses:
~ % - equal to 1, $ (the entire file)
~ . - current line

~ /<pattern>/ or ?<pattern>? - line where
<pattern> matches

- :%s/foo/bar/ - replace first foo in each
matching line with bar in the entire file

- :.,/<\/body>/s,
,
,gc - fiX br tags
from current line until the one with </body> in
it, asking for confirmation (c - ‘cautious’ mode)

replace

- & - repeat last substitution on current line
- :&& - repeat it with the flags that were used

- g& - repeat substitution globally, with flags

text objects.

better know what they are

since they are fantastically handy

can be used after an operator or in Visual mode
come in “inner” and “ambient” flavors

inner ones always select less text than ambient
ones

text objects.

awW - ambient word or WORD (see docs)

iw - inner word or WORD (see docs)

is - am

ip - am

vient or inner sentence

pient or inner paragraph

i{ - whole {..} block or text inside it

i(-W

i< =W

NO

NO

e(.)b

e <.>

ock or just text inside it

block or just text inside it

text objects.

there are some cooler ones

a’, i’ -single-quoted string or just the text
inside

a”, i" - double-quoted string or just the text
inside

~ note that these are smart about escaped quotes
inside strings

at, it - whole tag block or just text inside
(HTML and XML tags)

text objects.

examples:

das - delete the sentence, including whitespace after
ci(- change text inside (..) block

yat - copy the entire closest tag block the cursor is
inside

gUi’ - uppercase text inside the single-quoted string

vip - select the paragraph in Visual mode, without
whitespace after

copy/delete/paste

you should already know these

y - yank (copy), d - delete, p - paste after, P -
paste before

lp, 1P - paste after/before but adjust the
indent

Useful mappings to paste and reformat/reindent
:nnoremap <Esc>P P'[Vv']=

:nnoremap <Esc>p p'[V']=

registers

registers: your multi-purpose clipboard
you use them without even knowing

every y or d command copies to a register
unnamed or named

“<char> before a copy/delete/paste specifies
register named <char>

registers

copying to uppercase registers append to their
contents

~ useful for picking out bits from the buffers and
pasting as a chunk

“wyy - copy current line into register w

“WD - cut the rest of the line and append it to
the contents of register w

“wp - paste the contents of register w

CTRL-Rw - insert the contents of register w (in
Insert mode)

4

registers

~ you can record macros into registers

~ g<char> - start recording typed text into register
<char>

2

next g stops recording
~ @<char> executes macro <char>

~ @@ repeats last executed macro

~ use :reg to see what’s in your registers

undo

original vi had only one level of undo
yikes!
vim has unlimited (limited only by memory)

set ‘undolevels’ to what you need (1000
default)

undo

simple case: u - undo, CTRL-R - redo

vim 7 introduces branched

if you undo something, anc
new branch is created

undad

O

Ma

ke a change, a

g-, g+ - go to older/newer text state (through

branches)

undo

4

~ you can travel through time

~ tearlier Ns,m,h - go to text state as it was N
seconds, minutes, hours ago

~ :later Ns,m,h - go to a later text state similarly

- :earlier 10m - go back 10 minutes, before |
drank a can of Red Bull and made all these crazy
changes.Whew.

visual mode

4

use it, it's much easier than remembering
obscure range or motion commands

start selection with:
~ v - characterwise,

~ V - linewise

~ CTRL-V - blockwise

use any motion command to change selection

can execute any normal or : command on the
selection

visual mode

4

~ Visual block mode is awesome

~ especially for table-like text

tip: o switches cursor to the other corner,
continue selection from there

~ Once you are in block mode:

~

I<text><Esc> - insert <text> before block on every
line

A<text><Esc> - append <text> after block on every line
c<text><Esc> - change every line in block to <text>

r<char><Esc> - replace every character with <char>

abbreviations

~ Real-time string replacement

~ Expanded when a non-keyword character is
typed

~ :ab tempalte template - fix misspellings
~ more complicated expansion:

~ :lab techo <?php echo ?><Left><Left><Left>

windows

~ learn how to manipulate windows
~ learn how to move between them
- :new, : sp should be at your fingertips

~ CTRL-W commands - learn essential ones for
resizing and moving between windows

tab pages

vim 7 supports tab pages

:tabe <file> to edit file in a new tab
: tabce to close

:tabn, :tabp (or gt, gT to switch)

probably want to map these for easier
navigation (if gt, gT are too difficult)

4

completion

vim is very completion friendly

just use <Tab> on command line

~ for filenames, set ‘wildmenu’ and ‘wildmode’ (|
like "1ist:longest, full")

- :new ~/dev/fo<Tab> - complete filename
~ thelp ‘comp<Tab> - complete option name
~ :re<Tab> - complete command

~ hit <Tab> again to cycle, CTRL-N for next match,
CTRL-P for previous

completion

CTRL-X starts completion mode in Insert mode

follow with CTRL- combos (:help ins-
completion)

i mostly use filename, identifier,and omni
completion

when there are multiple matches, a nice
completion windows pops up

4

completion

- CTRL-X CTRL-F to complete filenames

- CTRL-X CTRL-N to complete identifiers

~ hey, that’s so useful I'll remap <Tab>

“ Insert <Tab> or complete identifier
“ 1f the cursor i1s after a keyword character
function MyTabOrComplete()

let col = col('.")-1
if !col || getline('.')[col-1] !~ '\k'
return "\<tab>"
else
return "\<C-N>"
endif
endfunction

inoremap <Tab> <C-R>=MyTabOrComplete()<CR>

completion

omni completion is heuristics-based
guesses what you want to complete
specific to the file type you're editing

more on it later

4

maps,

maps for every mode and then some
tired of changing text inside quotes?

:nmap X ci”
make vim more browser-like?

:nmap <Space> <PageDown>
insert your email quickly?

:imap ;EM me@mydomain.com

make <Backspace> act as <Delete> in Visual
mode!

svmap <BS> x

options

~ vim has hundreds of options

~

~

learn to control the ones you need
:options lets you change options interactively

:options | resize is better (since there are
SO many)

sessions.

~ a session keeps the views for all windows, plus
the global settings

~ you can save a session and when you restore it
later, the window layout looks the same.

~ smksession <file> to write out session to a
file

~ :source <file> to load session from a file

- vim -S <file> to start editing a session

4

miscellaneous

- gf - go to file under cursor (CTRL-W CTRL-F
for new window)

- :read in contents of file or process
- :read foo.txt -read in foo.txt

~ sread !wc %:h - run wc on current file and insert
result into the text

~ filter text: : ¢ !sort, :$!grep, or use :! in visual
mode

~ i like sorting lists like this: vip: !sort

miscellaneous

use command-line history

: and / followed by up/down arrows move
through history

: and / followed by prefix and arrows restrict
history to that prefix

g: and g/ for editable history (<Enter>
executes, CTRL-C copies to command line)

miscellaneous

CTRL-A and CTRL-X to increment/decrement
numbers under the cursor (hex and octal too)

ga - what is this character under my cursor?
:set number to turn line numbers on

or use this to toggle line numbers:

:nmap <silent> <F6> set number!<CR>

:set autowrite - stop vim asking if you want
to write the file before leaving buffer

CTRL-E/CTRL-Y - scroll window down/up
without moving cursor

miscellaneous

:set scroloff=N to start scrolling when
cursor is N lines from the top/bottom edge

:set updatecount=50 to write swap file to
disk after 50 keystrokes

:set showmatch matchtime=3 - when
bracket is inserted, briefly jump to the matching
one

in shell: fc invokes vim on last command, and
runs it after vim exits (or fc N to edit
command N in history)

vimdiff in shell (:help vimdiff)

miscellaneous

~ map CTRL-L to piece-wise copying of the line
above the current one

imap <C-L> @@@<ESC>hhkywjl?@@E@<CR>P/@@Q@<CR>3s

4

customization

~ customize vim by placing files in you ~/.vim dir

~ filetype plugin on,filetype indent on

.vimrc - global settings

.vim/
after/
ftplugin/
plugin/
syntax/
autoload/
colors/
doc/
ftdetect/
ftplugin/
indent/
plugin/
syntax/

files that are loaded at the very end

automatically loaded scripts
custom color schemes

plugin documentation
filetype detection scripts
filetype plugins

indent scripts

plugins

syntax scripts

php: linting

vim supports arbitrary build/lint commands

if we set 'makeprg' and 'errorformat'
appropriately..

:set makeprg=php\ -1\ %
:set errorformat=%m\ in\ %f\ on\ line\ %1

now we just type :make (and <Enter> a couple
of times)

cursor jumps to line with syntax error

php: match pairs.

you should be familiar with ¢ command (moves
cursor to matching item)

used with (), {}, [, etc

but can also be used to jump between PHP and
HTML tags

use matchit.vim plugin

but syntax/php.vim has bugs and typos in the
matching rule

i provide my own

php: block objects.

~ similar to vim's built-in objects
~ aP - PHP block including tags

~ 1P - text inside PHP block

examples:
~ vaP - select current PHP block (with tags)
~ c1P - change text inside current PHP block

~ yaP - copy entire PHP block (with tags)

~ provided in my .vim/ftplugin/php.vim file

php: syntax options.

vim comes with a very capable syntax plugin for
PHP

provides a number of options

~

let php sqgl query=1 to highlight SQL syntax in
strings
let php htmlInStrings=1 to highlight HTML in
string
let php noShortTags = 1 to disable short tags

let php folding = 1 to enable folding for
classes and functions

php: folding.

learn to control folding

-~ zo - open fold (if the cursor is on the fold line)
~ zc - close closest fold

~ zR - open all folds

~ zM - close all folds

~ z7j - move to the start of the next fold

- zk - move to the end of the previous fold

php: tags.

for vim purposes, tags are PHP identifiers
(classes, functions, constants)

you can quickly jump to the definition of each
tag, if you have a tags file

install Exuberant Ctags

it can scan your scripts and output tags file,
containing identifier info

currently does not support class membership
info (outputs methods as functions)

have to apply a third-party patch to fix

4

php: tags.

~ use mapping to re-build tags file after editing

nmap <silent> <F4>
\ :lctags-ex -f ./tags
\ --langmap="php:+.inc"
\ -h ".php.inc" -R --totals=yes
\ --tag-relative=yes --PHP-kinds=+cf-v .<CR>

set tags=./tags,tags

~ all PHP files in current directory and under it
recursively will be scanned

4

php: tags.

CTRL-] - jump to tag under cursor
CTRL-W CTRL-] - jump to tag in a new window
:tag <ident> - jump to an arbitrary tag

:tag /<regexp> - jump to or list tags matching
<regexp>

if multiple matches - select one from a list

:tselect <ident> or /<regexp> - list tags instead
of jumping

CTRL-T - return to where you were

See also taglist.vim plugin

php: completion

~ vim 7 introduces powerful heuristics-based
omni completion

- CTRL-X CTRL-O starts the completion (i map it
to CTRL-F)

~ completes classes, variables, methods in a smart
manner, based on context

php: completion

4

~ completes built-in functions too

~ function completion shows prototype preview

~

array <CTRL-X><CTRL-0> shows list of array
functions

select one from the list, and the prototype shows in
a preview window

CTRL-W CTRL-Z to close preview window

php: completion

switches to HTML/CSS/Javascript completion
outside PHP blocks

S€€ Mmore.
~ thelp ins-completion
~ thelp popupmenu-completion

~ shelp popupmenu-keys

plugins

vim can be infinitely customized and expanded
via plugins

there are thousands already written

installation is very easy, usually just drop them
into .vim/plugin

read instructions first though

netrw

4

makes it possible to read, write, and browse remote
directories and files

i usually use it over ssh connections via scp

need to run ssh-agent to avoid continuous prompts for
passphrase

don't use passphrase-less keys!

once set up:

~ vim scp://hostname/path/to/file
~ :new scp://hostname/path/to/dir/

4

NERDIree

similar to netrw browser but looks more like a
hierarchical explorer

does not support remote file operations

~ :nmap <silent> <F7> :NERDTreeToggle<CR>

taglist

provides an overview of the source code

provides quick access to classes, functions,
constants

automatically updates window when switching
buffers

can display prototype and scope of a tag

requires Exuberant Ctags

L 2

taglist
~ stick this in ~/.vim/after/plugin/general.vim

let Tlist Ctags Cmd = "/usr/local/bin/ctags-ex”
let Tlist Inc Winwidth =1
let Tlist Exit OnlyWindow = 1
let Tlist File Fold Auto Close =1
let Tlist Process File Always =1
let Tlist Enable Fold Column = 0
let tlist php settings = 'phpj;c:class;d:constant;f:function’
if exists('loaded taglist')
nmap <silent> <F8> :TlistToggle<CR>
endif

snippetsEmu

emulates some of the functionality of TextMate
snippets

supports many languages, including PHP/HTML/
CSS/Javascript

by default binds to <Tab> but that's annoying
need to remap the key after it's loaded

put this in ~/.vim/after/plugin/general.vim

1f exists('loaded snippet')
imap <C-B> <Plug>Jumper
endif
inoremap <Tab> <C-R>=MyTabOrComplete()<CR>

4

php documentor

~ inserts PHP Documentor blocks automatically
~ works in single or multi-line mode
~ doesn’t provide mappings by default

~ read documentation to set up default variables

for copyright, package, etc

~ put this in ~/.vim/ftplugin/php.vim

inoremap <buffer> <C-P> <Esc>:call PhpDocSingle()<CR>i
nnoremap <buffer> <C-P> :call PhpDocSingle()<CR>
vnoremap <buffer> <C-P> :call PhpDocRange()<CR>

let g:pdv _cfg Uses = 1

xdebug-ger.

allows debugging with xdebug through DBGp
protocol

fairly basic, but does the job
vim needs to be compiled with +python feature

see resources section for documentation links

vescommand

~ provides interface to CVS/SVN

~ install it, then :help vcscommand

conclusion

vim rules

this has been only a partial glimpse

from my very subjective point of view
don’t be stuck in an editor rut

keep reading and trying things out

L 2

resources

vim tips: http://www.vim.org/tips/

vim scripts: http://www.vim.org/scripts/index.php

Exuberant Ctags: http://ctags.sourceforge.net

PHP patch for ctags: http://www.live-emotion.com/memo/index.php?
plugin=attach&refer=%CA%AA%C3%D6&openfile=ctags-5.6j-php.zip

article on xdebug and vim: http://2bits.com/articles/using-vim-and-
xdebug-dbgp-for-debugging-drupal-or-any-php-application.html

more cool plugins:

Surround: http://www.vim.org/scripts/script.php?script_id=1697

2

ShowMarks: http://www.vim.org/scripts/script.php?script_id=152

14

l

Vim Outliner: http://www.vim.org/scripts/script.php?script_id=517

2

Tetris: http://www.vim.org/scripts/script.php?script_id=172

"As with everything, best not to
look too deeply into this."

Thank You!

http://outspark.com/

http://gravitonic.com/talks/

