
VIM for (PHP)
Programmers

Andrei Zmievski
Outspark, Inc

ZendCon ⁓ September 17, 2008

help

~ learn how to get help effectively

~ :help is your friend

~ use CTRL-V before a CTRL sequence command

~ use i_ and v_ prefixes to get help for CTRL
sequences in Insert and Visual modes

~ use CTRL-] (jump to tag) and CTRL-T (go back)
in help window

intro

~ how well do you know vim’s language?

~ what is the alphabet?

~ look at your keyboard

~ can you name what every key does?

~ modes - what are they?

~ how many do you know?

~ how many do you use?

intro
if you don’t like the language, change it

example: how do you quit vim quickly?

ZZ (exit with saving)

ZQ (exit without save)

or

:nmap ,w :x<CR>

:nmap ,q :q!<CR>

tip: set showcmd to see partial commands as
you type them

where am i?

How do you tell where you are?

~ simple - CTRL-G

~ detailed - gCTRL-G

~ do yourself a favor and set ruler

~ shows line, column, and percentage in status line

~ or configure it however you want with
‘rulerformat’

moving

~ do you us h/j/k/l for moving?

~ or are you stuck in GUIarrowy world?

~ if you are, re-learn

~ save yourself countless miles of movement
between home row and arrows

moving

How do you move to:

~ start/end of buffer? gg and G

~ line n? nG or ngg

~ n% into the file? n%

~ the first non-blank character in the line? ^

~ first non-blank character on next line? <CR>

~ first non-blank character on previous line? -

marks
~ we can bookmark locations in the buffer

~ m<letter> sets mark named <letter> at
current location

~ `<letter> jumps precisely to that mark

~ ‘<letter> jumps to the line with the mark

~ lowercase letter: mark is local to the buffer

~ uppercase letter: mark is global, your buffer will
be switched to the file with the mark

~ :marks shows you your current marks

marks

~ marks are very handy for changing text

~ set a mark (let’s say ma)

~ then you can do:

~ c`a - change text from cursor to mark a

~ d`a - delete text from cursor to mark a

~ =’a - reformat lines from current one to the one
with mark a

marks
~ let’s say you jump somewhere

~ how do you go back?

~ `` moves you between the last two locations

~ you can set ` (the context mark) explicitly:

~ m`, jump elsewhere, then come back with ``

tip: CTRL-O and CTRL-I move between
positions in the full jump history, but can’t be
used as motions

‘. and `. - jump to the line or exact location of
the last modification

insert

~ gi - incredibly handy

~ goes to Insert mode where you left it last time

~ scenario: edit something, exit Insert, go look at
something else, then gi back to restart editing

insert
Some more goodies:

~ CTRL-Y and CTRL-E (avoid work if you can)
~ inserts chars from above or below the cursor

~ CTRL-A (oops, i want to do that again)
~ inserts previously inserted text

~ CTRL-R=<expr> (built-in calculator)
~ inserts anything vim can calculate

~ CTRL-T and CTRL-D (tab and de-tab)
~ inserts or deletes one shiftwidth of indent at the start of

the line

delete

set your <Backspace> free

:set backspace=start,indent,eol

lets you backspace past the start of edit, auto-
indenting, and even start of the line

search

~ searching is essential

~ movement and information

~ how do you search?

~ f/F/t/T anyone?

~ how about * and #?

search

Search within the line:

~ f/F<char> jumps to the first <char> to the
right/left and places cursor on it

~ t/T<char> jumps does the same, but stops
one character short of it

~ df; - delete text from cursor to the first ; to
the right

~ cT$ - change text from cursor up to the first
$ to the left

search

~ often you want to find other instances of word
under the cursor

~ */# - find next/previous instance of whole word

~ g*/g# - find next/previous instance of partial word

~ or find lines with a certain word:
~ [I and]I - list lines with word under the cursor

~ more convenient to use a mapping to jump to a line:
:map ,f [I:let nr = input("Which one: ")<Bar>exe
"normal " . nr ."[\t"<CR>

search

~ of course, there’s always regexp search

~ /<pattern> - search forward for <pattern>

~ ?<pattern> - search backward for <pattern>

~ n repeats the last search

~ N repeats it in the opposite direction

~ vim regexp language is too sophisticated to be
covered here

search

Control your search options
~ :set wrapscan - to make search wrap around

~ :set incsearch - incremental search, <Enter>
accepts, <Esc> cancels

~ :set ignorecase - case-insensitive search, or use
this within the pattern:
~ \c - force case-insensitive search

~ \C - force case-sensitive search

search

~ remember that every search/jump can be used
as a motion argument

~ d/^# - delete everything up to the next
comment

~ y/^class/;?function - copy everything from
current point to the first function before the
first class

replace

~ :[range]s/<pattern>/<replace>/{flags}
is the substitute command

~ used mainly with range addresses

~ range addresses are very powerful (read the
manual)

~ but who wants to count out lines and do
something like :-23,’ts/foo/bar/

~ in reality you almost always use a couple of
shortcuts and Visual mode for the rest

replace
~ useful range addresses:

~ % - equal to 1,$ (the entire file)

~ . - current line

~ /<pattern>/ or ?<pattern>? - line where
<pattern> matches

~ :%s/foo/bar/ - replace first foo in each
matching line with bar in the entire file

~ :.,/<\/body>/s,
,
,gc - fix br tags
from current line until the one with </body> in
it, asking for confirmation (c - ‘cautious’ mode)

replace

~ & - repeat last substitution on current line

~ :&& - repeat it with the flags that were used

~ g& - repeat substitution globally, with flags

text objects

~ better know what they are

~ since they are fantastically handy

~ can be used after an operator or in Visual mode

~ come in “inner” and “ambient” flavors

~ inner ones always select less text than ambient
ones

text objects

~ aw, aW - ambient word or WORD (see docs)

~ iw, iW - inner word or WORD (see docs)

~ as, is - ambient or inner sentence

~ ap, ip - ambient or inner paragraph

~ a{, i{ - whole {..} block or text inside it

~ a(, i(- whole (..) block or just text inside it

~ a<, i< - whole <..> block or just text inside it

text objects

~ there are some cooler ones

~ a’, i’ - single-quoted string or just the text
inside

~ a”, i” - double-quoted string or just the text
inside

~ note that these are smart about escaped quotes
inside strings

~ at, it - whole tag block or just text inside
(HTML and XML tags)

text objects

examples:

das - delete the sentence, including whitespace after

ci(- change text inside (..) block

yat - copy the entire closest tag block the cursor is
inside

gUi’ - uppercase text inside the single-quoted string

vip - select the paragraph in Visual mode, without
whitespace after

copy/delete/paste

~ you should already know these

~ y - yank (copy), d - delete, p - paste after, P -
paste before

~]p,]P - paste after/before but adjust the
indent

~ Useful mappings to paste and reformat/reindent

:nnoremap <Esc>P P'[v']=

:nnoremap <Esc>p p'[v']=

registers

~ registers: your multi-purpose clipboard

~ you use them without even knowing

~ every y or d command copies to a register

~ unnamed or named

~ “<char> before a copy/delete/paste specifies
register named <char>

registers
~ copying to uppercase registers append to their

contents

~ useful for picking out bits from the buffers and
pasting as a chunk

~ “wyy - copy current line into register w

~ “WD - cut the rest of the line and append it to
the contents of register W

~ “wp - paste the contents of register w

~ CTRL-Rw - insert the contents of register w (in
Insert mode)

registers

~ you can record macros into registers
~ q<char> - start recording typed text into register
<char>

~ next q stops recording

~ @<char> executes macro <char>

~ @@ repeats last executed macro

~ use :reg to see what’s in your registers

undo

~ original vi had only one level of undo

~ yikes!

~ vim has unlimited (limited only by memory)

~ set ‘undolevels’ to what you need (1000
default)

undo

~ simple case: u - undo, CTRL-R - redo

~ vim 7 introduces branched undo

~ if you undo something, and make a change, a
new branch is created

~ g-, g+ - go to older/newer text state (through
branches)

undo

~ you can travel through time
~ :earlier Ns,m,h - go to text state as it was N

seconds, minutes, hours ago

~ :later Ns,m,h - go to a later text state similarly

~ :earlier 10m - go back 10 minutes, before I
drank a can of Red Bull and made all these crazy
changes. Whew.

visual mode
~ use it, it's much easier than remembering

obscure range or motion commands

~ start selection with:
~ v - characterwise,

~ V - linewise

~ CTRL-V - blockwise

~ use any motion command to change selection

~ can execute any normal or : command on the
selection

visual mode
~ Visual block mode is awesome

~ especially for table-like text

tip: o switches cursor to the other corner,
continue selection from there

~ Once you are in block mode:
~ I<text><Esc> - insert <text> before block on every

line

~ A<text><Esc> - append <text> after block on every line

~ c<text><Esc> - change every line in block to <text>

~ r<char><Esc> - replace every character with <char>

abbreviations

~ Real-time string replacement

~ Expanded when a non-keyword character is
typed
~ :ab tempalte template - fix misspellings

~ more complicated expansion:

~ :iab techo <?php echo ?><Left><Left><Left>

windows

~ learn how to manipulate windows

~ learn how to move between them

~ :new, :sp should be at your fingertips

~ CTRL-W commands - learn essential ones for
resizing and moving between windows

tab pages

~ vim 7 supports tab pages

~ :tabe <file> to edit file in a new tab

~ :tabc to close

~ :tabn, :tabp (or gt, gT to switch)

~ probably want to map these for easier
navigation (if gt, gT are too difficult)

completion

~ vim is very completion friendly

~ just use <Tab> on command line

~ for filenames, set ‘wildmenu’ and ‘wildmode’ (I
like "list:longest,full")

~ :new ~/dev/fo<Tab> - complete filename

~ :help ‘comp<Tab> - complete option name

~ :re<Tab> - complete command

~ hit <Tab> again to cycle, CTRL-N for next match,
CTRL-P for previous

completion

~ CTRL-X starts completion mode in Insert mode

~ follow with CTRL- combos (:help ins-
completion)

~ i mostly use filename, identifier, and omni
completion

~ when there are multiple matches, a nice
completion windows pops up

completion
~ CTRL-X CTRL-F to complete filenames

~ CTRL-X CTRL-N to complete identifiers

~ hey, that’s so useful I’ll remap <Tab>

“ Insert <Tab> or complete identifier
“ if the cursor is after a keyword character
function MyTabOrComplete()
 let col = col('.')-1
 if !col || getline('.')[col-1] !~ '\k'
 return "\<tab>"
 else
 return "\<C-N>"
 endif
endfunction

inoremap <Tab> <C-R>=MyTabOrComplete()<CR>

completion

~ omni completion is heuristics-based

~ guesses what you want to complete

~ specific to the file type you’re editing

~ more on it later

maps
~ maps for every mode and then some

~ tired of changing text inside quotes?

:nmap X ci"

~ make vim more browser-like?

:nmap <Space> <PageDown>

~ insert your email quickly?

:imap ;EM me@mydomain.com

~ make <Backspace> act as <Delete> in Visual
mode?
:vmap <BS> x

options

~ vim has hundreds of options

~ learn to control the ones you need

~ :options lets you change options interactively

~ :options | resize is better (since there are
so many)

sessions

~ a session keeps the views for all windows, plus
the global settings

~ you can save a session and when you restore it
later, the window layout looks the same.

~ :mksession <file> to write out session to a
file

~ :source <file> to load session from a file

~ vim -S <file> to start editing a session

miscellaneous

~ gf - go to file under cursor (CTRL-W CTRL-F
for new window)

~ :read in contents of file or process
~ :read foo.txt - read in foo.txt

~ :read !wc %:h - run wc on current file and insert
result into the text

~ filter text: :%!sort, :%!grep, or use :! in visual
mode

~ i like sorting lists like this: vip:!sort

miscellaneous

~ use command-line history

~ : and / followed by up/down arrows move
through history

~ : and / followed by prefix and arrows restrict
history to that prefix

~ q: and q/ for editable history (<Enter>
executes, CTRL-C copies to command line)

miscellaneous
~ CTRL-A and CTRL-X to increment/decrement

numbers under the cursor (hex and octal too)

~ ga - what is this character under my cursor?

~ :set number to turn line numbers on

~ or use this to toggle line numbers:

:nmap <silent> <F6> set number!<CR>

~ :set autowrite - stop vim asking if you want
to write the file before leaving buffer

~ CTRL-E/CTRL-Y - scroll window down/up
without moving cursor

miscellaneous
~ :set scroloff=N to start scrolling when

cursor is N lines from the top/bottom edge

~ :set updatecount=50 to write swap file to
disk after 50 keystrokes

~ :set showmatch matchtime=3 - when
bracket is inserted, briefly jump to the matching
one

~ in shell: fc invokes vim on last command, and
runs it after vim exits (or fc N to edit
command N in history)

~ vimdiff in shell (:help vimdiff)

 miscellaneous

~ map CTRL-L to piece-wise copying of the line
above the current one
imap <C-L> @@@<ESC>hhkywjl?@@@<CR>P/@@@<CR>3s

customization
~ customize vim by placing files in you ~/.vim dir

~ filetype plugin on, filetype indent on

.vimrc - global settings

.vim/
	

 after/	

	

 	

 - files that are loaded at the very end
	

 	

 ftplugin/
	

 	

 plugin/
	

 	

 syntax/
	

 	

 ...
	

 autoload/	

	

 - automatically loaded scripts
	

 colors/ 	

 	

 - custom color schemes
	

 doc/	

 	

 	

 - plugin documentation
	

 ftdetect/	

	

 - filetype detection scripts
	

 ftplugin/	

	

 - filetype plugins
	

 indent/	

 	

 - indent scripts
	

 plugin/	

 	

 - plugins
	

 syntax/	

 	

 - syntax scripts

php: linting

~ vim supports arbitrary build/lint commands

~ if we set 'makeprg' and 'errorformat'
appropriately..

 :set makeprg=php\ -l\ %

 :set errorformat=%m\ in\ %f\ on\ line\ %l

~ now we just type :make (and <Enter> a couple
of times)

~ cursor jumps to line with syntax error

php: match pairs
~ you should be familiar with % command (moves

cursor to matching item)

~ used with (), {}, [], etc

~ but can also be used to jump between PHP and
HTML tags

~ use matchit.vim plugin

~ but syntax/php.vim has bugs and typos in the
matching rule

~ i provide my own

php: block objects

~ similar to vim's built-in objects

~ aP - PHP block including tags

~ iP - text inside PHP block

examples:

~ vaP - select current PHP block (with tags)

~ ciP - change text inside current PHP block

~ yaP - copy entire PHP block (with tags)

~ provided in my .vim/ftplugin/php.vim file

php: syntax options

~ vim comes with a very capable syntax plugin for
PHP

~ provides a number of options
~ let php_sql_query=1 to highlight SQL syntax in

strings
~ let php_htmlInStrings=1 to highlight HTML in

string
~ let php_noShortTags = 1 to disable short tags
~ let php_folding = 1 to enable folding for

classes and functions

php: folding

~ learn to control folding
~ zo - open fold (if the cursor is on the fold line)

~ zc - close closest fold

~ zR - open all folds

~ zM - close all folds

~ zj - move to the start of the next fold

~ zk - move to the end of the previous fold

php: tags
~ for vim purposes, tags are PHP identifiers

(classes, functions, constants)

~ you can quickly jump to the definition of each
tag, if you have a tags file

~ install Exuberant Ctags

~ it can scan your scripts and output tags file,
containing identifier info

~ currently does not support class membership
info (outputs methods as functions)

~ have to apply a third-party patch to fix

php: tags

~ use mapping to re-build tags file after editing
nmap <silent> <F4>

 \ :!ctags-ex -f ./tags

 \ --langmap="php:+.inc"

 \ -h ".php.inc" -R --totals=yes

 \ --tag-relative=yes --PHP-kinds=+cf-v .<CR>

set tags=./tags,tags

~ all PHP files in current directory and under it
recursively will be scanned

php: tags
~ CTRL-] - jump to tag under cursor

~ CTRL-W CTRL-] - jump to tag in a new window

~ :tag <ident> - jump to an arbitrary tag

~ :tag /<regexp> - jump to or list tags matching
<regexp>

~ if multiple matches - select one from a list

~ :tselect <ident> or /<regexp> - list tags instead
of jumping

~ CTRL-T - return to where you were

~ See also taglist.vim plugin

php: completion

~ vim 7 introduces powerful heuristics-based
omni completion

~ CTRL-X CTRL-O starts the completion (i map it
to CTRL-F)

~ completes classes, variables, methods in a smart
manner, based on context

php: completion

~ completes built-in functions too

~ function completion shows prototype preview
~ array_<CTRL-X><CTRL-O> shows list of array

functions

~ select one from the list, and the prototype shows in
a preview window

~ CTRL-W CTRL-Z to close preview window

php: completion

~ switches to HTML/CSS/Javascript completion
outside PHP blocks

~ see more:
~ :help ins-completion

~ :help popupmenu-completion

~ :help popupmenu-keys

plugins

~ vim can be infinitely customized and expanded
via plugins

~ there are thousands already written

~ installation is very easy, usually just drop them
into .vim/plugin

~ read instructions first though

netrw

~ makes it possible to read, write, and browse remote
directories and files

~ i usually use it over ssh connections via scp

~ need to run ssh-agent to avoid continuous prompts for
passphrase

~ don't use passphrase-less keys!

~ once set up:

~ vim scp://hostname/path/to/file

~ :new scp://hostname/path/to/dir/

NERDTree

~ similar to netrw browser but looks more like a
hierarchical explorer

~ does not support remote file operations
~ :nmap <silent> <F7> :NERDTreeToggle<CR>

taglist

~ provides an overview of the source code

~ provides quick access to classes, functions,
constants

~ automatically updates window when switching
buffers

~ can display prototype and scope of a tag

~ requires Exuberant Ctags

taglist
~ stick this in ~/.vim/after/plugin/general.vim

let Tlist_Ctags_Cmd = "/usr/local/bin/ctags-ex"
let Tlist_Inc_Winwidth = 1
let Tlist_Exit_OnlyWindow = 1
let Tlist_File_Fold_Auto_Close = 1
let Tlist_Process_File_Always = 1
let Tlist_Enable_Fold_Column = 0
let tlist_php_settings = 'php;c:class;d:constant;f:function'
if exists('loaded_taglist')
 nmap <silent> <F8> :TlistToggle<CR>
endif

snippetsEmu
~ emulates some of the functionality of TextMate

snippets

~ supports many languages, including PHP/HTML/
CSS/Javascript

~ by default binds to <Tab> but that's annoying

~ need to remap the key after it's loaded

~ put this in ~/.vim/after/plugin/general.vim

if exists('loaded_snippet')
 imap <C-B> <Plug>Jumper
endif
inoremap <Tab> <C-R>=MyTabOrComplete()<CR>

php documentor
~ inserts PHP Documentor blocks automatically

~ works in single or multi-line mode

~ doesn’t provide mappings by default

~ read documentation to set up default variables
for copyright, package, etc

~ put this in ~/.vim/ftplugin/php.vim

inoremap <buffer> <C-P> <Esc>:call PhpDocSingle()<CR>i
nnoremap <buffer> <C-P> :call PhpDocSingle()<CR>
vnoremap <buffer> <C-P> :call PhpDocRange()<CR>
let g:pdv_cfg_Uses = 1

xdebug-ger

~ allows debugging with xdebug through DBGp
protocol

~ fairly basic, but does the job

~ vim needs to be compiled with +python feature

~ see resources section for documentation links

vcscommand

~ provides interface to CVS/SVN

~ install it, then :help vcscommand

conclusion

~ vim rules

~ this has been only a partial glimpse

~ from my very subjective point of view

~ don’t be stuck in an editor rut

~ keep reading and trying things out

resources
~ vim tips: http://www.vim.org/tips/

~ vim scripts: http://www.vim.org/scripts/index.php

~ Exuberant Ctags: http://ctags.sourceforge.net

~ PHP patch for ctags: http://www.live-emotion.com/memo/index.php?
plugin=attach&refer=%CA%AA%C3%D6&openfile=ctags-5.6j-php.zip

~ article on xdebug and vim: http://2bits.com/articles/using-vim-and-
xdebug-dbgp-for-debugging-drupal-or-any-php-application.html

~ more cool plugins:

~ Surround: http://www.vim.org/scripts/script.php?script_id=1697

~ ShowMarks: http://www.vim.org/scripts/script.php?script_id=152

~ Vim Outliner: http://www.vim.org/scripts/script.php?script_id=517

~ Tetris: http://www.vim.org/scripts/script.php?script_id=172

"As with everything, best not to
look too deeply into this."

Thank You!

http://gravitonic.com/talks/

http://outspark.com/

