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about me

e PHP core developer since 1999
ee Infrastructure software engineer at Yahoo! Inc.

& Email: andrei@gravitonic.com
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Neurophysiologists Warren | AND

McCulloch and Walter Pitts | a.

developed a mathematical way ol
of describing the neural L~ ai

networks
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Later, mathematician Stephen " AND
Kleene published a paper that |
iIntroduced the concept of
regular expressions that were
used to describe “the algebra of
regular sets”
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Subsequently, Ken Thompson,
one of the fathers of Unix, found
a practical application for them
In the various tools of the early
OS
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Regular expressions are like ice cream
¢« Common base

ce Many flavors
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regex flavors

& Three types of engines that affect how matc
done

o DFA
% Traditional NFA

¢s POSIX NFA

& For our purposes we discuss the re
PHPs’ Perl-compatible regular expre
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regular expression

subject string
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building blocks

& Regexes are like LEGOs

¢ Small pieces combined into larger
onhes using connectors

& Arbitrarily complex
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ordinary

special X
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not designated special
metacharacters

ee Special set is a well-defined subset of

ee Ordinary set consist of all characters
& Special characters are also called
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matching Ilterals

ee 1T he most basic regex consists of a
single ordinary character
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matching Ilterals

ee 1T he most basic regex consists of a
single ordinary character

& It matches the first occurrence of that
character in the string
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ee 1T he most basic regex consists of a
single ordinary character

& It matches the first occurrence of that
character in the string

se Characters can be added together to
form longer regexes
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extended characters

ee 10 match an extended character, use \xhh notation where hh are
hexadecimal digits

& To match Unicode characters (in UTF-8 mode) mode use \x{hhh..}
notation
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For example, the following regex matches my name in Ceyrillic:

\x{0410}\x{043d}\x{0434}\x{0440}\x{0435}\x{0439}

extended characters
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To use one of these literally, escape it, that
~ is prepend it with a backslash | [] ()
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To escape a sequence of characters, put
~ them between \Q and \E | i [] ()

Price is \Q$12.36\E A $
will match ¥ + ?
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So will the backslashed version [] ()

Price is \$12.36 A $
will match * + ?
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characters specified inside the class

¢s Consist of a set of characters placed
Inside square brackets

& Matches one and only one of the

character classes

40
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¢e Mmatches an English vowel (lowercase) [a e I O u ]

& matches or [ St] u I“f
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negated classes

¢e Placing a caret as the first character after the
opening bracket negates the class

& Will match any character not in the class,
including newlines

& [*<>] would match a character that is not left or
right bracket



character ranges

& Placing a dash (-) between two
characters creates a range
from the first one to the
second one

& Useful for abbreviating a list of
characters

[a-Z]




character ranges

e Ranges can be reversed

[z-a]




character ranges

e Ranges can be reversed

& A class can have more than
one range and combine
ranges with normal lists

[a-z0-9:]
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[-]

[Z—W] matches z, y, x, or w
[a —20—9] matches digits and lowercase letters
[\XO 1 —\X 1 f] matches control characters
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Some ranges are so frequently used that
it would be nice to have...

O

shortcuts
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\W  word character [A-Za-z0-9 ]
\d decimal digit [0-9]
\s whitespace [ \n\r\t\f]

\W  not a word character [AA-Za-20-9 ]
\D not a decimal digit [A0-9]

\S not whitespace [A \N\r\t\f]

shortcuts for ranges [-]



- 51 LI Ly |

¢e Inside a character class, most
metacharacters lose their meaning
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& Inside a character class, most

\ | metacharacters lose their meaning
& Exceptions are:
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¢e Inside a character class, most

\ | metacharacters lose their meaning
& Exceptions are:

& closing bracket
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¢e Inside a character class, most

\ | metacharacters lose their meaning
& Exceptions are:

& closing bracket

ce backslash
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¢e Inside a character class, most

\ | metacharacters lose their meaning
& Exceptions are:

& closing bracket

ce backslash

| o
A T i ee Cd ret
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¢e Inside a character class, most

\ | metacharacters lose their meaning
& Exceptions are:

& closing bracket

ce backslash

| .
A — | & caret

ce dash
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To use them literally, either escape them
with a backslash or put them where they |

[a bA] do not have special meaning



. 58 LIy |

dot metacharacter

¢e¢ By default matches any single
character
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dot metacharacter

¢e¢ By default matches any single
character
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dot metacharacter

¢e¢ By default matches any single
character
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dot metacharacter

& Use dot carefully - it might match
something you did not intend

& 12.45 will match literal

& But it will also match these:
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quantifiers Or, Hit Me Baby One More Time



Confucius said, 44’,;,; _1%:

"Real knowledge is to know the 2 (L%

extent of one's ignorance.* ;{b ,{ é

ok
1%
'

-
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We are almost never sure about
the contents of the text.
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Quantifiers help us deal with this
uncertainty !



quantifiers

They specify how many times a 43
regex component must repeat in
order for the match to be
successful -

i}




68 LIy |

repeatable components

literal character \w \d \s
- \WN\D\S

dot metacharacter range shortcuts

[ ] subpattern
character class | i
i backreference i
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¢s Indicates that the preceding component is optional

& Regex welcome!? will match either or

¢ Regex super\s?strong means that and may have an
optional whitespace character between them |

& Regex hello[!?]? Will match , , or
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¢ Indicates that the preceding component has to appear once or
more

& Regex a+h will match ah, , , etc
e Regex -\d+ will match negative integers, such as

s Regex [A”]+ means to match a sequence (more than one) of
characters until the next quote

one-or-more
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Zero-or-more

¢e Indicates that the preceding component can match zero or more
times

co Regex \d+\.\d* will match 2., 3.1,

ee Regex <[a-z][a-z0-9]*> will match an opening HTML tag with no
attributes, such as or , but not or
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general repetition { }

oo Specifies the minimum and the maximum number of times a
component has to match

& Regex ha{l1,3} matches ha, :

& Regex \d{8} matches exactly 8 digits



73 LIy |

general repetition { }

ee If second number is omitted, no upper range is set

& Regex go{2,}al matches , , , etc






greediness

“One of the weaknesses of our age is our
apparent inability to distinguish our needs
from our greeds.” — Don Robinson

greediness n., matching as much as
possible, up to a limit
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& To find words ending in
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& The simplest solution is to
make the repetition operators
non-greedy, or lazy

& Lazy quantifiers grab as little
as possible

& If the overall match fails, they
grab a little more and the
match is tried again
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overcoming greedlness

¢e 10 make a greedy quantifier

+? lazy, append ?
& Note that this use of the
| > question mark is different from
{1, | its use as a regular quantifier
7?
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overcoming greediness

*?
Applying <.+?>
+?
to <i>
{, ¥
gets us <i>

7




overcoming greediness

= ¢e Another option is to use
A\ negated character classes

e More efficient and clearer than
lazy repetition




overcoming greediness

& <.+?> can be turned into <[A>]+>

& Note that the second version
will match tags spanning
multiple lines

& Single-line version: <[A>\r\n]+>
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assertions and anchors

¢e An assertion is a regex operator that
ce expresses a statement about the current matching point

& consumes ho characters
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assertions and anchors

¢e The most common type of an assertion is an anchor
& Anchor matches a certain position in the subject string
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& Caret, or circumflex, is an anchor that
matches at the beginning of the subject |

string | @

& F basically means that the subject
string has to start with an F
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dollar sign

¢e Dollar sign is an anchor that matches \d $
at the end of the subject string or right |
before the string-ending newline

& \d$ means that the subject string has @
to end with a digit |
& The string may be or ,
but either one will match O
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multiline matching

& Often subject strings consist of
multiple lines

& If the multiline option is set: @

o Caret () also matches immediately
after any newlines

& Dollar sign ($) also matches |
immediately before any newlines two
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absolute start/end

oo Sometimes you really want to match
the absolute start or end of the subject
string when in the multiline mode

¢e These assertions are always valid:
o \A matches only at the very beginning
& \Z matches only at the very end

& \Z matches like $ used in single-line
mode
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word boundarles \b \B

& A word boundary is a position in the |
string with a word character (\w) on one |
side and a non-word character (or |
string boundary) on the other

@ ¢ \b matches when the current position is
' a word boundary |

& \B matches when the current position is
not a word boundary
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word boundarles \b \B

& A word boundary is a position in the |
string with a word character (\w) on one |
side and a non-word character (or |
string boundary) on the other

& \b matches when the current position is |
a word boundary

& \B matches when the current position is
not a word boundary
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word boundarles \b \B

& A word boundary is a position in the |
string with a word character (\w) on one |
side and a non-word character (or |
string boundary) on the other

@ ¢ \b matches when the current position is
' a word boundary |

> & \B matches when the current position is
' not a word boundary



subpatterns

& Parentheses can be used group a part of
the regex together, creating a subpattern

¢e You can apply regex operators to a
subpattern as a whole




grouping

& Regex is(land)? matches both is and

e Regex (\d\d,)*\d\d will match a
comma-separated list of double-digit
numbers




- 96 LIy |

capturing subpatterns ( )

¢ All subpatterns by default are capturing

¢e A capturing subpattern stores the corresponding matched portion
of the subject string in memory for later use
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capturing subpatterns ( )

i —(\W+)-
& Subpatterns are numbered by counting | (d\d-(\w+) \d{4})§
their opening parentheses from left to |
right |
& Regex (\d\d-(\w+)-\d{4}) has two @
subpatterns i
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capturing subpatterns ( )

C(\d\d-Ow)-\d{4])

& Subpatterns are numbered by counting
their opening parentheses from left to

right |

& Regex \d\d-(\w+)-\d{4}) has two @
subpatterns |

& When run against the

second subpattern will capture May
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non-capturing subpatterns

¢e The capturing aspect of subpatterns is not always necessary

¢e It requires more memory and more processing time
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non-capturing subpatterns

se Using 7: after the opening parenthesis makes a purely grouping
subpattern

& Regex box(?:.ers)? will match but will not capture anything

¢ The (?:) subpatterns are not included in the subpattern numbering
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¢e¢ It can be hard to keep track of subpattern numbers in a
complicated regex

se Using ?P<name> after the opening parenthesis creates a named
subpattern

¢s Named subpatterns are still assigned numbers

& Pattern (?P<number>\d+) will match and capture 99 into
subpattern named number when run against



E 102 URR A RRR)

¢s Alternation operator allows testing several sub-expressions at a
given point

¢e¢ The branches are tried in order, from left to right, until one
| succeeds |

& Empty alternatives are permitted

& Regex sailing|cruising will match either or

alternation
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ee Since alternation has the lowest precedence, grouping is often

necessary
& sixth|seventh sense will match the word or the phrase
& (sixth|seventh) sense will match or

alternation
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e Camel|came|camera will only match came when run against

& Remember that the regex engine is eager
& It will return a match as soon as it finds one
¢e Put more likely regex as the first alternative

-
O
nfd
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Q
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backtracking

& Also known as “if at first you
don’t succeed, try, try again”

& When faced with several
options it could try to achieve a
match, the engine picks one
and remembers the others
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backtracking

& If the picked option does not
lead to an overall successful
match, the engine backtracks
to the decision point and tries
another option
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backtracking

o This continues until an overall
match succeeds or all the
options are exhausted

& The decision points include
quantifiers and alternation
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backtracking

Two important rules to
remember

& With greedy quantifiers the engine
always attempts the match, and
with lazy ones it delays the match

& If there were several decision
points, the engine always goes
back to the most recent one
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backtracking example

start
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\d+00 1
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backtracking example

string exhausted
still need to match 00
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\d+00 1230
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\d+00 123
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backtracking example

SUCCESS
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start
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\d+ff 123
cannot match f here
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\d+ff 12

give up 3
still cannot match f
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give up 2
still cannot match f
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cannot give up more
because of +
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failure
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start
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go back and try
matching b now
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SUCCESS
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atomic grouping

& Disabling backtracking can be useful

& The main goal is to speed up failed
matches, especially with nested
quantifiers
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atomic grouping

& (?>regex) will treat regex as a single
atomic token, no backtracking will
occur inside it

¢s All the saved states are forgotten
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atomic grouping

ce (7>\d+)ff will lock up all available digits
and fail right away if the next two
characters are not ff

& Atomic groups are not capturing
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possessive quantifiers

¢ Atomic groups can be arbitrarily
complex and nested

¢ Possessive quantifiers are simpler and
apply to a single repeated item
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possessive quantifiers

e ¢» To make a quantifier possessive append
| asingle +

S

e T & \d++ff is equivalent to (2>\d+)ff
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possessive quantifiers

=% & Other ones are *+, 7+, and {m,n}+

-'j o Possessive quantifiers are always greedy
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Imize

++d will not match at all

change the outcome of the match
\w

& \w+ will match the whole string

& \w+d will match abed

¢e Keep in mind that atomic grouping and possessive quantifiers can
“‘

¢ When run against string

ajd
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O
-
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O
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O
-
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e
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o Assertions that test whether the characters before or after the
current point match the given regex

& Consume no characters
& Do not capture anything

& Includes lookahead and lookbehind
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positive Iookahead (?=)

¢¢ Tests whether the characters after the
current point match the given regex

& (A\WH)(?=)(.*) matches surfing: a sport
but semicolon ends up in the second
subpattern
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negative lookahead (?!)

ce lests whether the characters after the

current point do not match the given
regex

& fish(?'ing) matches fish not followed by §
ing |

& Will match and
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negative lookahead (?!)

e Difficult to do with character classes

e fish[A1[An][Ag] might work but will
consume more than needed and fail on
subjects shorter than 7 letters

& Don’t even go there if you want
something like fish(?'hook|ing)
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positive lookbehind (?<=)

& Tests whether the characters

immediately preceding the current point
match the given regex

& The regex must be of fixed size, but
branches are allowed

& (?<=foo)bar matches bar only if
preceded by foo, e.qg.
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negative lookbehind

& Tests whether the characters

immediately preceding the current point
do not match the given regex

& Once again, regex must be of fixed size

& (?<!foo)bar matches bar only if not
preceded by foo0, e.g. but not
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makes dot metacharacter match newline also
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(i) e Options can be combined and unset
(2im-sx)
(?m)
ee At top level, apply to the whole pattern
?
(?s) % Localized inside subpatterns
(?x) (a?i)b)c
(?U)
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SONE2A\WH) ) F (22N @2 \wH C (2> TANANNTHF (2NN TANANNT R R PN IANONNANTF (2NN IANINNANT ) *N [N T+)) %) *$

Here’s a regex | wrote when working on Smarty templating engine

ANENWH (2> (N LN+ [ NSNWH [ \w+H (Vo AWH) 2)NT) | (N .|

N
e
-
Q
&
=
O
&
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comments

Let me blow that up for you

“NS\wH (2> (\ [ (\d+ | \S\w+ | \w+(\ . \w+)?2)\ 1) |
((\o]|=>)\$2\w+) ) *(2>\|@2\w+ (= (2>"[""\\\\]*
(2NN LA \NANNT*) %" [N AN NN T
(2NANNG LN NNANNT* ) =N [ [ 7] 1+) ) %) *S

Would you like some comments with that?
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¢s Perl-compatible regex APl (PCRE) was introduced in PHP 3.0.9
¢» Starting with PHP 4.2.0 the API is enabled by default

¢s Uses consistent pattern syntax

U
¢e All functions start with preg  prefix
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pattern syntax

¢s The regex must be enclosed in
delimiters and passed as a single- or
double-quoted string

‘/labc]+/’

“/labc]+/”
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pattern syntax

¢s The regex must be enclosed in
delimiters and passed as a single- or
double-quoted string

¢e Delimiter character cannot be
Z[a bC]"‘Z | alphanumeric or backslash

NO!
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pattern syntax

¢s The regex must be enclosed in
delimiters and passed as a single- or
double-quoted string

& Delimiter character cannot be
alphanumeric or backslash

o os If the delimiter character has to be used
/ <VI >/ ’ in the regex, escape it with a backslash
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pattern syntax

¢s The regex must be enclosed in
delimiters and passed as a single- or
double-quoted string

& Delimiter character cannot be
alphanumeric or backslash

& If the delimiter character has to be used |
In the regex, escape it with a backslash

2 /i ¢s The ending delimiter may optionally be
/ <a.*+: >/ IS | followed by pattern modifiers



AR XX

N
. -
D
.lm_
O
S
-
. -
Q
njed
e
(O
Q

makes dot metacharacter match newline also
makes quantifiers ungreedy (lazy) by default

enables multiline matching for » and $
ignores literal whitespace and allows #

enables case-insensitive mode
comments

The first five should be familiar
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anchors the pattern at the beginning of string
performs additional analysis on the pattern
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Valid:

o /\d {4}_\d\d(—\d\d )7/

& /<(h\d)>.*?<\/\1>/iU

=
2
)
v
-
=
7
£
*-
m
O
i
<.
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Invalid:
& /.49 - missing end delimiter
& /ab(c|d)/J - unknown modifier J

& /\s?*/ - compilation failure, misapplied
quantifier *
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PHP metacharacter issues

¢» PHP can interpret regex metacharacters as its own
& To avoid confusion:
& Backslash the common metacharacters

ee Use single quotes to make life easier
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PHP metacharacter Issues

¢s Even with single quotes, the “leaning
toothpick” syndrome may occur

¢s 10 match a single backslash, one has

to use ‘A\\V’ & /\\\\/’
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PHP metacharacter ISSues

¢s Even with single quotes, the “leaning
toothpick” syndrome may occur

¢s 10 match a single backslash, one has

to use ‘/A\\\\V’ - /\\/,

& First, PHP interprets it as ‘/\\/’
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¢s Even with single quotes, the “leaning
toothpick” syndrome may occur

¢s 10 match a single backslash, one has

to use ‘/A\\\\V’ \\

& First, PHP interprets it as ‘/\\/’

& Then, regex engine sees it as an
escaped backslash metacharacter
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¢s Caseless matching and character class determination are affected
by the current locale

¢ For example, set_locale(’'£fr FR’) will set the French locale

s The locale can be changed via PHP’s setlocale () function
which will be taken into account by the engine
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preg_match(string regex, string subject,

array matches, int flags, int offset)

es Tries to find the first occurrence of a pattern described by regex in
the string

¢ Returns 0 or 1 (FALSE on error)
¢s If matches is provided, it is filled with the match results
¢» Stops after the first successful match

& Best used for validation
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preg_match_all(string regex, string subjecit,

array matches, int flags, int offset)

ss Tries to find all patterns described by regex in the string
¢s Matching continues from the end of the last match

es Return number of successful matches or FALSE on error



E 175 ¢¢¢¢¢¢¢E

preg_replace(mixed regex, mixed replacement,

mixed subject, int limit)

¢» Applies regex to subject and replaces matches with replacement

e limit specifies how many matches to replace, -1 means no limit (the
default) |

¢s Returns modified subject if matches are found
¢s» regex, subject, and replacement can be one-dimensional arrays

ss Allows for multiple searches and replacements on multiple strings
at once
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preg_replace(mixed regex, mixed replacement,

mixed subject, int limit)

& replacement may contain references of the form \\n or $n (the
preferred syntax)

es Such reference will be replaced by the text matched by the n’th
capturing subpattern
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preg_replace(mixed regex, mixed replacement,

mixed subject, int limit)

¢s /e modifier on regex treats replacement as PHP code

s The references are resolved, the code is evaluated, and the result is
used as the replacement
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preg _replace_callback(mixed regex, mixed callback,

mixed subject, int limit)

¢» Identical to preg replace () except that the replacement is
specified by a callback function

es For each match the callback is invoked with the match info and is
supposed to return the replacement string
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preg_split(string regex, string subject, int limit,

int flags)

¢ Splits subject along boundaries matched by regex
¢» Returns an array of split pieces

¢ limit determines the maximum number of pieces, -1 means no limit
(the default)

¢» The type of splitting can be controlled by flags
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preg_grep(string regex, array input, int flags)

¢ Applies regex to each element of input array
¢s Return a new array consisting only of elements that matched

o If flags if PREG_GREP_INVERT, only the elements that did not
match will be returned
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regex toolkit

ee In your day-to-day development, you will frequently find yourself
running into situations calling for regular expressions

es It is useful to have a toolkit from which you can quickly draw the
solution

ee It is also important to know how to avoid problems in the regexes
themselves
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matching vs. validation

¢s In matching (extraction) the regex must
account for boundary conditions

& In validation your boundary conditions
are known - the whole string
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matching vs. validation

& Matching an English word starting with
a capital letter

\b[A-Z][a-zA-Z’-]*\b

& Validating that a string fulfills the same
condition

A[A-ZI[a-ZA-Z’-1%$

& Do not forget A and $ anchors for
validation!
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& One of the most used

& One of the most misused

& Remember - dot is a shortcut for [A\n]
& May match more than you really want
& <> will match but also <!>, < >, etc
& Be explicit about what you want

& <[a-z]> is better
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using dot properly

& When dot is combined with quantifiers it
becomes greedy

e <.+> will consume any characters
between the first bracket in the line and
the last one

gpe——e___ —'!r ~e; .
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using dot properly

ee It’s better to use negated character class
Instead

<[A>]+> if bracketed expression spans lines

<[A>\r\n]+> otherwise

& Lazy quantifier can be used, but they are
not as efficient, due to backtracking
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optimizing unlimited repeats

.
& One of the most common problems is (regexi|regex2|..) i
combining an inner repetition with an
outer one
(regex™®)+
(regex+)*
(.*?bar)*
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optimizing unlimited repeats

& One of the most common problems is (regex1 lregele“)*
combining an inner repetition with an
outer one
(regex™)+
& If the initial match fails, the number of
ways to split the string between the
quantifiers grows exponentially
(regex+)*
(.*?bar)*
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optimizing unlimited repeats

*
& One of the most common problems is (regex1|regex2]..)

combining an inner repetition with an
outer one
(regex™)+
& If the initial match fails, the number of
ways to split the string between the

quantifiers grows exponentially .
| (regex+)
& The problem gets worse when the inner |
regex contains a dot, because it can |

match anything! (.*?bar)*



E 191 ¢¢¢¢¢¢¢E

optimizing unlimited repeats

(regex1|regex2|..)*

d» PCRE has an optimization that helps in
certain cases, and also a hardcoded i (regex*)+
limit for the backtracking |

¢e Ihe best way to solve this is to prevent !
unnecessary backtracking in the first | (regex+)*
place via atomic grouping or |
possessive quantifiers

(-*?bar)*
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optimizing unlimited repeats

& Consider the expression
[“’](\W"‘ I\S{I ,2})*[5551

¢ When applied to the string (with final quote), it
matches quickly

¢ When applied to the string (no final quote), it runs 35
times slower!
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optimizing unlimited repeats

¢ We can prevent backtracking from going back to the matched
portion by adding a possessive quantifier:

[“’TOAW+|\s{1,2})*+[“’]

¢s With nested unlimited repeats, you should lock up as much of the
string as possible right away
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ee Even better, concentrate on del
(?<=[\s.,21]|M)([A\s., 211+ (\s., 21\ 1)++(?=[\s.,?!1| $)

removing
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ee Even better, concentrate on delimiters

dupl

t match a non-delimiter sequence,

IrsS

that is preceded by a delimiter or

beginning of string
duplicates of the first match,

by delimiters

o F

(?<=[\s., 21 M)(A\s. 2 1+H)(\s., 21N\ ++(?=[\s.,7!]| $)

& Then match atomically one or more

Y O

W T DT el
SRS S

removing
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ee Even better, concentrate on delimiters
ee First match a non-delimiter sequence,
that is preceded by a delimiter or

beginning of string

& Then match atomically one or more
duplicates of the first match, separated |
by delimiters

& And make sure it is followed by a
delimiter or the end of the string

(?<=[\s., 21| M)(M\s., 2 1+H)(D\s., 21N\ D)++(?=[\s.,?!]| $)

g . — = —_ prans ; - Ly — -
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ee Even better, concentrate on delimiters
ee First match a non-delimiter sequence,
that is preceded by a delimiter or

beginning of string

& Then match atomically one or more
duplicates of the first match, separated |
by delimiters

& And make sure it is followed by a
delimiter or the end of the string

& Replace with $1

(?<=[\s., 21| M)(M\s., 2 1+H)(D\s., 21N\ D)++(?=[\s.,?!]| $)

g . — = —_ prans ; - Ly — -
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& Simple, if the comments are not allowed to nest

& 1/\*.*¥N\*/1Is replaced with an empty string will work for C-like
comments

e General pattern: /start.*?end/s

¢s For nested comments, a recursive pattern is necessary
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extracting markup

¢e¢ Possible to use preg match all () for grabbing marked up
portions

¢¢ But for tokenizing approach, preg split () is better

$s = 'a <b><I>test</I></b> of <br /> markup';

Stokens = preg split(
'1( < /? [a-2A-Z][a-2A-Z20-9]* [~/>]* /? > ) lx', Ss, -1,
PREG SPLIT NO EMPTY | PREG SPLIT DELIM CAPTURE);

result is array('a', '<b>','<I>', 'test’', '</I>",
'</b>','of','<br />', 'markup')
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restricting markup

ee Suppose you want to strip all markup except for some allowed
subset, what are your possible approaches?

¢ Use strip tags() - which is limited

¢ Multiple invocations of str replace() or preg replace() to
remove script blocks, etc

¢ Custom tokenizer and processor, or..
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$s = preg replace callback(
't < (/?) ([a-2zZA-Z][a-2A-Z0-9]*) (["/>]1*) (/?) > Ix',
'my strip', $s);

ifunction my strip($match) ({ i
i static $allowed tags = array('b’', 'i', 'p', 'br', 'a');

i Stag = Smatch[2]; i
| Sattrs = $match[3]; |
i if (!in_array($tag, Sallowed tags)) return ‘’; i
i if (!empty($match[1l])) return "</S$Stag>"; i
i /* strip evil attributes here */ i
| if ($tag == 'a') { Sattrs = ''; } |
| /* any other kind of processing here */ i
i return "<$tagSattrsSmatch[4]>"; i
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matching numbers

& Integers are easy: \b\d+\b

& Floating point numbers:

& Can be covered by (\b\d+)?\.\d+\b
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matching numbers

& To match both integers and floating -y s Y - J
point numbers, either combine them | "o N g
with alternation or use:

((\b\d+)?\.)?\b\d+\b

& [+—-1?7 can be prepended to any of these,
If sign matching is needed

& \b can be substituted by more

appropriate assertions based on the
required delimiters
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matching quoted strings

&% A simple case is a string that does not contain escaped quotes
inside it

& Matching a quoted string that spans lines:

“[A!!]*”

& Matching a quoted string that does not span lines:

“[A!!\r\n ]*!!
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matching e-mail addresses

& Do | look crazy to you?
& The complete regex is about a book page long in 10-point type

& Buy a copy of Jeffrey Friedl’s book and steal it from there
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matching phone numbers

¢e Assuming we want to match US/Canada-style phone numbers
800-555-1212 1-800-555-1212
800.555.1212 1.800.555.1212
(800) 555-1212 1 (800) 555-1212

& How would you do it?
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matching phone numbers

& The simplistic approach could be:
(1L .-D?2\@\d{3} )?[ .-1\d{3} [.-1\d{4}
& But this would result in a lot of false positives:

1.(800)-555 1212 800).555-1212
1-800 555-1212 (800 555-1212



E 215 ¢¢¢¢¢¢¢E

|
10 INAA{3})[ N\d{3}-\d{4}

or

just match the third format

A anchor to the start of the string
:1([.-D)? may have 1. or 1- (remember the separator)
\d{3}  three digits
((2(1) if we had a separator
\1 | match the same (and remember), otherwise
[.-1)) match . or - as a separator (and remember)
\d{3} another three digits
\2 same separator as before
\d{4} final four digits

anchor to the end of the string
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¢ Don’t do everything in regex -
a lot of tasks are best left to
PHP

& Use string functions for simple
tasks

& Make sure you know how
backtracking works
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e aware of the context

-3
O W

apture only what you intend to
use

¢e Don’t use single-character
classes
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& Lazy vs. greedy, be specific

& Put most likely alternative first
In the alternation list

o Think!
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Thank You!

Questions?




