RN

Andrei Zmievski, Yahoo! Inc. php|works
| andrei@gravitonic.com Thursday 11:30 - 13:00

Andrei’s Regex Clinic

R

Andrei Zmievski, Yahoo! Inc. Thursday 11:30 - 13:00
| andrei@gravitonic.com

Andrei’s Regex Clinic

R

Andrei Zmievski, Yahoo! Inc. Thursday 11:30 - 13:00
| andrei@gravitonic.com

Andrei’s Regex Clinic

R

Andrei Zmievski, Yahoo! Inc. Thursday 11:30 - 13:00
| andrei@gravitonic.com

Andrei’s Regex Clinic

R

Andrei Zmievski, Yahoo! Inc. Thursday 11:30 - 13:00
| andrei@gravitonic.com

Andrei’s Regex Clinic

6 R

about me

e PHP core developer since 1999
ee Infrastructure software engineer at Yahoo! Inc.

& Email: andrei@gravitonic.com

7 O

8 R

9 R

RN

RN

RN

->
->
-
-
-
-
-

expressions

regular...

JuspijuoyH

14 LIy |

BT e W A R T W

I e GRETRITIOT &.Fiymmﬁidww" \

Regular expressions can be i
traced back to early research on

the human nervous system

|
|
|
|
|
|
I
I.aﬂmm.:am:
|
|
|

Gﬂ-ﬂﬂ:ﬂ FIG'J.‘-"H |
Caeliac plezu.

15 R

Neurophysiologists Warren | AND

McCulloch and Walter Pitts | a.

developed a mathematical way ol
of describing the neural L~ ai

networks

16 R

Later, mathematician Stephen " AND
Kleene published a paper that |
iIntroduced the concept of
regular expressions that were
used to describe “the algebra of
regular sets”

AR XX

Subsequently, Ken Thompson,
one of the fathers of Unix, found
a practical application for them
In the various tools of the early
OS

31X}, :_”N|<”_<= da.ib i#

-
e,
)
D
h _
S
O
o
O
©

17

AR XX

o)
c
©
S
._._A_uv_w
©
3 5
M;h..
£ 8
£ ®
O o
T @
e o
%o
€5
S
._&.I
o
Q>
3 §
O o
L -

Q
L2
()
(@)
Im
L
TR
Q
=
O
/p

occurs In the text

¢s FInd out whether a certain pattern
L

inflexible

& Literal string searches are fast but
“‘

se With regular expressions you can:

Q- |
. -
e,
|l
ke,
O
e,
O)
4 |
)
e
O
i e
S

18

> TT
> |
> |
> “
-> Y i
> O |
wjd _
O |
a m
. m
o)) |
c ¥ |
-Ie m
-It |
- O |
3 m
O ® |
T < |
X g° m
S “
O 3 “
wfd [
" |
O & "
o |
D - m

>
O)
O
O
=
&
-
Q
s

AR XX

Subject String

>
O)
O
O
=
&
-
Q
s

Match

a portion of the string that is successfully
described by the regex

>
O)
O
O
=
&
-
Q
s

AR XX

Ins
ing

matches given a regex and a str

brary that obta

A program or a li

Engine

>
O)
O
O
=
&
-
Q
s

23 LIy |

Regular expressions are like ice cream
¢« Common base

ce Many flavors

24 LIy |

regex flavors

& Three types of engines that affect how matc
done

o DFA
% Traditional NFA

¢s POSIX NFA

& For our purposes we discuss the re
PHPs’ Perl-compatible regular expre

AR XX

QO
=
e
=

(&
&=

©

&

o
S

(@)
=

-
S~

(@)

c
-
e

N

tries again

Q
<
e

O

c
O

®

72,

Q

=

=
o

Q
=

(@)

c

o

Q
L
-
<

0
X
S
O
=
o
=
o
-
O
h
<
-
©
>
o
£

25

AR XX

7
QO
Dl_
=
ajd
o
IB
2
>
©
o
)
-
)
Y
o
9
Q!
3
wpd
Q
L
-

earliest (leftmost) match it

finds
favors match over a non-

understand about the engine
match

& It will always return the
¢ Given a choice it always

¢ Two basic things to

0
X
S
O
=
o
k=
o
-
O
h
<
-
©
>
o
£

26

27 R

regular expression

subject string

->
->
-
-
-
-
-

29 LIy |

building blocks

& Regexes are like LEGOs

¢ Small pieces combined into larger
onhes using connectors

& Arbitrarily complex

- 30 LIy |

ordinary

special X

AR XX

not designated special
metacharacters

ee Special set is a well-defined subset of

ee Ordinary set consist of all characters
& Special characters are also called

- 32 LIy |

matching Ilterals

ee 1T he most basic regex consists of a
single ordinary character

- 33 LIy |

matching Ilterals

ee 1T he most basic regex consists of a
single ordinary character

& It matches the first occurrence of that
character in the string

34 LIy |

ee 1T he most basic regex consists of a
single ordinary character

& It matches the first occurrence of that
character in the string

se Characters can be added together to
form longer regexes

35 LIy |

extended characters

ee 10 match an extended character, use \xhh notation where hh are
hexadecimal digits

& To match Unicode characters (in UTF-8 mode) mode use \x{hhh..}
notation

36 LIy |

For example, the following regex matches my name in Ceyrillic:

\x{0410}\x{043d}\x{0434}\x{0440}\x{0435}\x{0439}

extended characters

7 O

To use one of these literally, escape it, that
~ is prepend it with a backslash | [] ()

8 O

To escape a sequence of characters, put
~ them between \Q and \E | i [] ()

Price is \Q$12.36\E A $
will match ¥ + ?

39 LIy |

So will the backslashed version [] ()

Price is \$12.36 A $
will match * + ?

AR XX

characters specified inside the class

¢s Consist of a set of characters placed
Inside square brackets

& Matches one and only one of the

character classes

40

41 R

42 LIy |

43 LIy |

¢e Mmatches an English vowel (lowercase) [a e I O u]

& matches or [St] u I“f

44 RN

negated classes

¢e Placing a caret as the first character after the
opening bracket negates the class

& Will match any character not in the class,
including newlines

& [*<>] would match a character that is not left or
right bracket

character ranges

& Placing a dash (-) between two
characters creates a range
from the first one to the
second one

& Useful for abbreviating a list of
characters

[a-Z]

character ranges

e Ranges can be reversed

[z-a]

character ranges

e Ranges can be reversed

& A class can have more than
one range and combine
ranges with normal lists

[a-z0-9:]

48 LIy |

[-]

[Z—W] matches z, y, x, or w
[a —20—9] matches digits and lowercase letters
[\XO 1 —\X 1 f] matches control characters

49 LIy |

Some ranges are so frequently used that
it would be nice to have...

O

shortcuts

- 50 LIy |

\W word character [A-Za-z0-9]
\d decimal digit [0-9]
\s whitespace [\n\r\t\f]

\W not a word character [AA-Za-20-9]
\D not a decimal digit [A0-9]

\S not whitespace [A \N\r\t\f]

shortcuts for ranges [-]

- 51 LI Ly |

¢e Inside a character class, most
metacharacters lose their meaning

- 52 LIy |

& Inside a character class, most

\ | metacharacters lose their meaning
& Exceptions are:

53 LIy |

¢e Inside a character class, most

\ | metacharacters lose their meaning
& Exceptions are:

& closing bracket

- 54 RN

¢e Inside a character class, most

\ | metacharacters lose their meaning
& Exceptions are:

& closing bracket

ce backslash

55 RN

¢e Inside a character class, most

\ | metacharacters lose their meaning
& Exceptions are:

& closing bracket

ce backslash

| o
A T i ee Cd ret

- 56 LIy |

¢e Inside a character class, most

\ | metacharacters lose their meaning
& Exceptions are:

& closing bracket

ce backslash

| .
A — | & caret

ce dash

57 RN

To use them literally, either escape them
with a backslash or put them where they |

[a bA] do not have special meaning

. 58 LIy |

dot metacharacter

¢e¢ By default matches any single
character

- 99 LIy |

dot metacharacter

¢e¢ By default matches any single
character

- 60 LIy |

dot metacharacter

¢e¢ By default matches any single
character

- 61 R

. 62 LIy |

dot metacharacter

& Use dot carefully - it might match
something you did not intend

& 12.45 will match literal

& But it will also match these:

. 63 LIy |

quantifiers Or, Hit Me Baby One More Time

Confucius said, 44’,;,; _1%:

"Real knowledge is to know the 2 (L%

extent of one's ignorance.* ;{b ,{ é

ok
1%
'

-

65 JLIiLy |

We are almost never sure about
the contents of the text.

. 66 LIy |

Quantifiers help us deal with this
uncertainty !

quantifiers

They specify how many times a 43
regex component must repeat in
order for the match to be
successful -

i}

68 LIy |

repeatable components

literal character \w \d \s
- \WN\D\S

dot metacharacter range shortcuts

[] subpattern
character class | i
i backreference i

- 69 LIy |

¢s Indicates that the preceding component is optional

& Regex welcome!? will match either or

¢ Regex super\s?strong means that and may have an
optional whitespace character between them |

& Regex hello[!?]? Will match , , or

70 LIy |

¢ Indicates that the preceding component has to appear once or
more

& Regex a+h will match ah, , , etc
e Regex -\d+ will match negative integers, such as

s Regex [A”]+ means to match a sequence (more than one) of
characters until the next quote

one-or-more

71 R

Zero-or-more

¢e Indicates that the preceding component can match zero or more
times

co Regex \d+\.\d* will match 2., 3.1,

ee Regex <[a-z][a-z0-9]*> will match an opening HTML tag with no
attributes, such as or , but not or

72 LIy |

general repetition { }

oo Specifies the minimum and the maximum number of times a
component has to match

& Regex ha{l1,3} matches ha, :

& Regex \d{8} matches exactly 8 digits

73 LIy |

general repetition { }

ee If second number is omitted, no upper range is set

& Regex go{2,}al matches , , , etc

greediness

“One of the weaknesses of our age is our
apparent inability to distinguish our needs
from our greeds.” — Don Robinson

greediness n., matching as much as
possible, up to a limit

2004

AR XX

c
©
L
)
| -
Q
L
)
©
.
(@)
c
-
o=
'p)
Q@
o
e
S
)
e
o
(7]
)
e
()
S
©
£

A
\"
o=
2]
=

possible by default

P,
o)
0
=
d
0
O
S
o

& Quantifiers try to grab as much as

& Applying <.+> to

77

AR XX

o)
O O
3
e £
e
©
o)
> 0
Q-5
< 0
o
C ¢
Q0w
= ®©
e
<
O 3
Z E
-
o &
2
wu
9 3
mg
> O

L®
Q
Q
(&
O
-
(7))
>
QO
(@)
()
} .
(T
o
e
(/)]
()
}
QO
L
i

P,
o)
0
=
d
0
O
S
o

& If the entire match fails because they

78

AR XX

"

0
2

)
=

e
()
ujd
©
S
Q
e
=
L®]
| -
©
(7))
=
Q
ujd
&)
©
e
©
e
(&
<
el
2]
K
Q
e
=
Q.
-

N
d
QO
Q
O
O
-
n

, you will

probably use \w+ness

word

P,
o)
0
=
d
0
O
S
o

& On the first run \w+ takes the whole
& But since ness still has to match

& To find words ending in

79

- 80 LIy |

& The simplest solution is to
make the repetition operators
non-greedy, or lazy

& Lazy quantifiers grab as little
as possible

& If the overall match fails, they
grab a little more and the
match is tried again

- 81 LIy |

overcoming greedlness

¢e 10 make a greedy quantifier

+? lazy, append ?
& Note that this use of the
| > question mark is different from
{1, | its use as a regular quantifier
7?

82

overcoming greediness

*?
Applying <.+?>
+?
to <i>
{, ¥
gets us <i>

7

overcoming greediness

= ¢e Another option is to use
A\ negated character classes

e More efficient and clearer than
lazy repetition

overcoming greediness

& <.+?> can be turned into <[A>]+>

& Note that the second version
will match tags spanning
multiple lines

& Single-line version: <[A>\r\n]+>

85 LIy |

assertions and anchors

¢e An assertion is a regex operator that
ce expresses a statement about the current matching point

& consumes ho characters

- 86 LIy |

assertions and anchors

¢e The most common type of an assertion is an anchor
& Anchor matches a certain position in the subject string

- 87 LIy |

& Caret, or circumflex, is an anchor that
matches at the beginning of the subject |

string | @

& F basically means that the subject
string has to start with an F

88 LIy |

dollar sign

¢e Dollar sign is an anchor that matches \d $
at the end of the subject string or right |
before the string-ending newline

& \d$ means that the subject string has @
to end with a digit |
& The string may be or ,
but either one will match O

89 LIy |

multiline matching

& Often subject strings consist of
multiple lines

& If the multiline option is set: @

o Caret () also matches immediately
after any newlines

& Dollar sign ($) also matches |
immediately before any newlines two

90 LIy |

absolute start/end

oo Sometimes you really want to match
the absolute start or end of the subject
string when in the multiline mode

¢e These assertions are always valid:
o \A matches only at the very beginning
& \Z matches only at the very end

& \Z matches like $ used in single-line
mode

91 LIy |

word boundarles \b \B

& A word boundary is a position in the |
string with a word character (\w) on one |
side and a non-word character (or |
string boundary) on the other

@ ¢ \b matches when the current position is
' a word boundary |

& \B matches when the current position is
not a word boundary

92 LIy |

word boundarles \b \B

& A word boundary is a position in the |
string with a word character (\w) on one |
side and a non-word character (or |
string boundary) on the other

& \b matches when the current position is |
a word boundary

& \B matches when the current position is
not a word boundary

93 LIy |

word boundarles \b \B

& A word boundary is a position in the |
string with a word character (\w) on one |
side and a non-word character (or |
string boundary) on the other

@ ¢ \b matches when the current position is
' a word boundary |

> & \B matches when the current position is
' not a word boundary

subpatterns

& Parentheses can be used group a part of
the regex together, creating a subpattern

¢e You can apply regex operators to a
subpattern as a whole

grouping

& Regex is(land)? matches both is and

e Regex (\d\d,)*\d\d will match a
comma-separated list of double-digit
numbers

- 96 LIy |

capturing subpatterns ()

¢ All subpatterns by default are capturing

¢e A capturing subpattern stores the corresponding matched portion
of the subject string in memory for later use

97 LIy |

capturing subpatterns ()

i —(\W+)-
& Subpatterns are numbered by counting | (d\d-(\w+) \d{4})§
their opening parentheses from left to |
right |
& Regex (\d\d-(\w+)-\d{4}) has two @
subpatterns i

- 98 LIy |

capturing subpatterns ()

C(\d\d-Ow)-\d{4])

& Subpatterns are numbered by counting
their opening parentheses from left to

right |

& Regex \d\d-(\w+)-\d{4}) has two @
subpatterns |

& When run against the

second subpattern will capture May

- 99 LIy |

non-capturing subpatterns

¢e The capturing aspect of subpatterns is not always necessary

¢e It requires more memory and more processing time

i 100 VLIV |

non-capturing subpatterns

se Using 7: after the opening parenthesis makes a purely grouping
subpattern

& Regex box(?:.ers)? will match but will not capture anything

¢ The (?:) subpatterns are not included in the subpattern numbering

E 101 ¢¢¢¢¢¢¢E

¢e¢ It can be hard to keep track of subpattern numbers in a
complicated regex

se Using ?P<name> after the opening parenthesis creates a named
subpattern

¢s Named subpatterns are still assigned numbers

& Pattern (?P<number>\d+) will match and capture 99 into
subpattern named number when run against

E 102 URR A RRR)

¢s Alternation operator allows testing several sub-expressions at a
given point

¢e¢ The branches are tried in order, from left to right, until one
| succeeds |

& Empty alternatives are permitted

& Regex sailing|cruising will match either or

alternation

103 LIy |

ee Since alternation has the lowest precedence, grouping is often

necessary
& sixth|seventh sense will match the word or the phrase
& (sixth|seventh) sense will match or

alternation

AR XX

e Camel|came|camera will only match came when run against

& Remember that the regex engine is eager
& It will return a match as soon as it finds one
¢e Put more likely regex as the first alternative

-
O
nfd

O

-

. -

Q
—

©

104

105

backtracking

& Also known as “if at first you
don’t succeed, try, try again”

& When faced with several
options it could try to achieve a
match, the engine picks one
and remembers the others

106

backtracking

& If the picked option does not
lead to an overall successful
match, the engine backtracks
to the decision point and tries
another option

107

backtracking

o This continues until an overall
match succeeds or all the
options are exhausted

& The decision points include
quantifiers and alternation

108

backtracking

Two important rules to
remember

& With greedy quantifiers the engine
always attempts the match, and
with lazy ones it delays the match

& If there were several decision
points, the engine always goes
back to the most recent one

i 109 ¢¢¢¢¢¢¢E

backtracking example

start

i 110 ¢¢¢¢¢¢¢E

\d+00 1

5111 ¢¢¢¢¢¢¢E

i 112 ¢¢¢¢¢¢¢E

i 113 ¢¢¢¢¢¢¢E

i 114 ¢¢¢¢¢¢¢E

i 115 ¢¢¢¢¢¢¢E

backtracking example

string exhausted
still need to match 00

i 116 ¢¢¢¢¢¢¢E

\d+00 1230

i 117 ¢¢¢¢¢¢¢E

\d+00 123

i 118 ¢¢¢¢¢¢¢E

i 119 ¢¢¢¢¢¢¢E

backtracking example

SUCCESS

i 120 ¢¢¢¢¢¢¢E

start

i 121 ¢¢¢¢¢¢¢E

i 122 ¢¢¢¢¢¢¢E

i 123 ¢¢¢¢¢¢¢E

i 124 ¢¢¢¢¢¢¢E

\d+ff 123
cannot match f here

i 125 AR XX E

\d+ff 12

give up 3
still cannot match f

i 126 AR XX E

give up 2
still cannot match f

E 127 ¢¢¢¢¢¢¢E

cannot give up more
because of +

i 128 ¢¢¢¢¢¢¢E

failure

i 129 ¢¢¢¢¢¢¢E

start

i 130 ¢¢¢¢¢¢¢E

i 131 ¢¢¢¢¢¢¢E

i 132 ¢¢¢¢¢¢¢E

i 133 ¢¢¢¢¢¢¢E

go back and try
matching b now

i 134 ¢¢¢¢¢¢¢E

i 135 ¢¢¢¢¢¢¢E

SUCCESS

i 136 AR XX E

atomic grouping

& Disabling backtracking can be useful

& The main goal is to speed up failed
matches, especially with nested
quantifiers

E 137 ¢¢¢¢¢¢¢E

atomic grouping

& (?>regex) will treat regex as a single
atomic token, no backtracking will
occur inside it

¢s All the saved states are forgotten

i 138 AR XX E

atomic grouping

ce (7>\d+)ff will lock up all available digits
and fail right away if the next two
characters are not ff

& Atomic groups are not capturing

139

possessive quantifiers

¢ Atomic groups can be arbitrarily
complex and nested

¢ Possessive quantifiers are simpler and
apply to a single repeated item

140

possessive quantifiers

e ¢» To make a quantifier possessive append
| asingle +

S

e T & \d++ff is equivalent to (2>\d+)ff

141

possessive quantifiers

=% & Other ones are *+, 7+, and {m,n}+

-'j o Possessive quantifiers are always greedy

AR XX

Imize

++d will not match at all

change the outcome of the match
\w

& \w+ will match the whole string

& \w+d will match abed

¢e Keep in mind that atomic grouping and possessive quantifiers can
“‘

¢ When run against string

ajd
Q.
O
-
QO
> |
O
ajd
O
-
e,

e

142

AR XX

d
)
i e
()
]
©
S
7))
©
L
c
=
Q
el
e
©
Q.
0
-
/p)
(@)
c
-
-
el
Q.
©
(&)

capturing subpattern
& It matches whatever the referent

& A backreference is an alias to a

N
Q
O
-
QO
. -
Q
| Tl
QO
. -
=
QO
qe
o

143

AR XX

. . m

- T S

n 0 - O |

._nld-m = c “

s ha Q — i
2= |

O g 2 g m
O s Q |

®, S5 S _
- o 3 = sm m
O - c O |

o iz s. EE
et S o c W “
© T - |

D £ S o & “
N — ® = m
- O = Q5 |

+ T 2° 5 3 “

O |

. - WO & O o |
~ ESIRTEI
O < X © |

O >sf L8 §E
O E S 5 S “

& = |

C £E3E 29 8 “
M ® ® |
3 b % % . |

E 145 ¢¢¢¢¢¢¢E

o Assertions that test whether the characters before or after the
current point match the given regex

& Consume no characters
& Do not capture anything

& Includes lookahead and lookbehind

LLLLILY |

positive Iookahead (?=)

¢¢ Tests whether the characters after the
current point match the given regex

& (A\WH)(?=)(.*) matches surfing: a sport
but semicolon ends up in the second
subpattern

147 ¢¢¢¢¢¢¢E

negative lookahead (?!)

ce lests whether the characters after the

current point do not match the given
regex

& fish(?'ing) matches fish not followed by §
ing |

& Will match and

i 148 AR XX E

negative lookahead (?!)

e Difficult to do with character classes

e fish[A1[An][Ag] might work but will
consume more than needed and fail on
subjects shorter than 7 letters

& Don’t even go there if you want
something like fish(?'hook|ing)

149

positive lookbehind (?<=)

& Tests whether the characters

immediately preceding the current point
match the given regex

& The regex must be of fixed size, but
branches are allowed

& (?<=foo)bar matches bar only if
preceded by foo, e.qg.

150

negative lookbehind

& Tests whether the characters

immediately preceding the current point
do not match the given regex

& Once again, regex must be of fixed size

& (?<!foo)bar matches bar only if not
preceded by foo0, e.g. but not

AR XX

makes dot metacharacter match newline also

=
O
>
N
C
O
=
Q
o
>
o]
O
(D
=
O
O
S
O
o]
c
©
o
(@)
£
L
O
e
©
£
O
L
-

c
Im
7))
(7))
()
p -
Q.
>
Q
|
0
-
(@)
(¢}
| -
Q
L
"
Im
e
-
Q.

enables case-insensitive mode
enables multiline matching for » and $
makes quantifiers ungreedy (lazy) by default

ignores literal whitespace

n
-
O
S
s
O
Q
=
=

151

E 152 ¢¢¢¢¢¢¢E

(i) e Options can be combined and unset
(2im-sx)
(?m)
ee At top level, apply to the whole pattern
?
(?s) % Localized inside subpatterns
(?x) (a?i)b)c
(?U)

AR XX

SONE2A\WH)) F (22N @2 \wH C (2> TANANNTHF (2NN TANANNT R R PN IANONNANTF (2NN IANINNANT) *N [N T+)) %) *$

Here’s a regex | wrote when working on Smarty templating engine

ANENWH (2> (N LN+ [NSNWH [\w+H (Vo AWH) 2)NT) | (N .|

N
e
-
Q
&
=
O
&

153

i 154 ¢¢¢¢¢¢¢E

comments

Let me blow that up for you

“NS\wH (2> (\ [(\d+ | \S\w+ | \w+(\ . \w+)?2)\ 1) |
((\o]|=>)\$2\w+)) *(2>\|@2\w+ (= (2>"[""\\\\]*
(2NN LA \NANNT*) %" [N AN NN T
(2NANNG LN NNANNT*) =N [[7] 1+)) %) *S

Would you like some comments with that?

AR XX

0 |

= |

o "

7 ~ m

> — |

2 £ O m

k= o |

% E = m

T = @) |

L z § 9
njd 3 = |
O a C _

n (&) 7p) d m
e N D (o] |
Q = |

X o O m |

O = Q |

m D q H |
- e - N |

= 1A
o =50 & =2
Ty, ° ° i
L) L) _

0 & . . m

AR XX

£E = »

~ 9 9) |

#.mm Q S |

S c] — |

QO Q O © |

£ 590 o = |

©Tg 9 0 - |

O E ® N Y &= m

.mad % do “

> © 9 N = |

S22 0 3 E |

" BRI >

=05 £ S |

O .Id “

: #0060 3 3 < m

n Sms ® - Y |

-Ia-I | - rd “

D cco O T c |

o0 0 .£ = " © |

m a®3 £ # # |

O 0 O i + “

& 2 % m Z & |

el =32 & R m

© O ® o/ |
Ty’ ®s % |
3 O m

AR XX

0
<
>
O
oy
O
e

E 158 ¢¢¢¢¢¢¢E

¢s Perl-compatible regex APl (PCRE) was introduced in PHP 3.0.9
¢» Starting with PHP 4.2.0 the API is enabled by default

¢s Uses consistent pattern syntax

U
¢e All functions start with preg prefix

E 199 AR XX E

pattern syntax

¢s The regex must be enclosed in
delimiters and passed as a single- or
double-quoted string

‘/labc]+/’

“/labc]+/”

E 160 ¢¢¢¢¢¢¢E

pattern syntax

¢s The regex must be enclosed in
delimiters and passed as a single- or
double-quoted string

¢e Delimiter character cannot be
Z[a bC]"‘Z | alphanumeric or backslash

NO!

i 161 ¢¢¢¢¢¢¢E

pattern syntax

¢s The regex must be enclosed in
delimiters and passed as a single- or
double-quoted string

& Delimiter character cannot be
alphanumeric or backslash

o os If the delimiter character has to be used
/ <VI >/ ’ in the regex, escape it with a backslash

E 162 ¢¢¢¢¢¢¢E

pattern syntax

¢s The regex must be enclosed in
delimiters and passed as a single- or
double-quoted string

& Delimiter character cannot be
alphanumeric or backslash

& If the delimiter character has to be used |
In the regex, escape it with a backslash

2 /i ¢s The ending delimiter may optionally be
/ <a.*+: >/ IS | followed by pattern modifiers

AR XX

N
. -
D
.lm_
O
S
-
. -
Q
njed
e
(O
Q

makes dot metacharacter match newline also
makes quantifiers ungreedy (lazy) by default

enables multiline matching for » and $
ignores literal whitespace and allows #

enables case-insensitive mode
comments

The first five should be familiar

163

AR XX

N
. -
D
.lm_
O
S
-
. -
Q
njed
e
(O
Q

anchors the pattern at the beginning of string
performs additional analysis on the pattern

164

c
O
=
3]
)
7
VS
e’
Q
O
o 3
S p—
O c @
= O) 9
) T O |
= () O o
7)) & Q
() © 0 Q,
o < L =
@ o S5
re)
o = s O
2 © o k=
+ = Qo L
5 £ g 2
m €QL @ o
< O - Q _
~ ~ ~ ~ |

165

Valid:

o /\d {4}_\d\d(—\d\d)7/

& /<(h\d)>.*?<\/\1>/iU

=
2
)
v
-
=
7
£
*-
m
O
i
<.

166

Invalid:
& /.49 - missing end delimiter
& /ab(c|d)/J - unknown modifier J

& /\s?*/ - compilation failure, misapplied
quantifier *

E 167 ¢¢¢¢¢¢¢E

PHP metacharacter issues

¢» PHP can interpret regex metacharacters as its own
& To avoid confusion:
& Backslash the common metacharacters

ee Use single quotes to make life easier

E 168 ¢¢¢¢¢¢¢E

PHP metacharacter Issues

¢s Even with single quotes, the “leaning
toothpick” syndrome may occur

¢s 10 match a single backslash, one has

to use ‘A\\V’ & /\\\\/’

i 169 ¢¢¢¢¢¢¢E

PHP metacharacter ISSues

¢s Even with single quotes, the “leaning
toothpick” syndrome may occur

¢s 10 match a single backslash, one has

to use ‘/A\\\\V’ - /\\/,

& First, PHP interprets it as ‘/\\/’

170 RN

¢s Even with single quotes, the “leaning
toothpick” syndrome may occur

¢s 10 match a single backslash, one has

to use ‘/A\\\\V’ \\

& First, PHP interprets it as ‘/\\/’

& Then, regex engine sees it as an
escaped backslash metacharacter

E 171 YAy

¢s Caseless matching and character class determination are affected
by the current locale

¢ For example, set_locale(’'£fr FR’) will set the French locale

s The locale can be changed via PHP’s setlocale () function
which will be taken into account by the engine

173

preg_match(string regex, string subject,

array matches, int flags, int offset)

es Tries to find the first occurrence of a pattern described by regex in
the string

¢ Returns 0 or 1 (FALSE on error)
¢s If matches is provided, it is filled with the match results
¢» Stops after the first successful match

& Best used for validation

E 174 ¢¢¢¢¢¢¢E

preg_match_all(string regex, string subjecit,

array matches, int flags, int offset)

ss Tries to find all patterns described by regex in the string
¢s Matching continues from the end of the last match

es Return number of successful matches or FALSE on error

E 175 ¢¢¢¢¢¢¢E

preg_replace(mixed regex, mixed replacement,

mixed subject, int limit)

¢» Applies regex to subject and replaces matches with replacement

e limit specifies how many matches to replace, -1 means no limit (the
default) |

¢s Returns modified subject if matches are found
¢s» regex, subject, and replacement can be one-dimensional arrays

ss Allows for multiple searches and replacements on multiple strings
at once

E 176 ¢¢¢¢¢¢¢E

preg_replace(mixed regex, mixed replacement,

mixed subject, int limit)

& replacement may contain references of the form \\n or $n (the
preferred syntax)

es Such reference will be replaced by the text matched by the n’th
capturing subpattern

E 177 ¢¢¢¢¢¢¢E

preg_replace(mixed regex, mixed replacement,

mixed subject, int limit)

¢s /e modifier on regex treats replacement as PHP code

s The references are resolved, the code is evaluated, and the result is
used as the replacement

i 178 Liliiil

preg _replace_callback(mixed regex, mixed callback,

mixed subject, int limit)

¢» Identical to preg replace () except that the replacement is
specified by a callback function

es For each match the callback is invoked with the match info and is
supposed to return the replacement string

E 179 ¢¢¢¢¢¢¢E

preg_split(string regex, string subject, int limit,

int flags)

¢ Splits subject along boundaries matched by regex
¢» Returns an array of split pieces

¢ limit determines the maximum number of pieces, -1 means no limit
(the default)

¢» The type of splitting can be controlled by flags

i 180 AR XX E

preg_grep(string regex, array input, int flags)

¢ Applies regex to each element of input array
¢s Return a new array consisting only of elements that matched

o If flags if PREG_GREP_INVERT, only the elements that did not
match will be returned

AR XX

i
S
-
X
)
O)
)
oC

E 182 ¢¢¢¢¢¢¢E

regex toolkit

ee In your day-to-day development, you will frequently find yourself
running into situations calling for regular expressions

es It is useful to have a toolkit from which you can quickly draw the
solution

ee It is also important to know how to avoid problems in the regexes
themselves

183

matching vs. validation

¢s In matching (extraction) the regex must
account for boundary conditions

& In validation your boundary conditions
are known - the whole string

184

matching vs. validation

& Matching an English word starting with
a capital letter

\b[A-Z][a-zA-Z’-]*\b

& Validating that a string fulfills the same
condition

A[A-ZI[a-ZA-Z’-1%$

& Do not forget A and $ anchors for
validation!

i 185 ¢¢¢¢¢¢¢E

& One of the most used

& One of the most misused

& Remember - dot is a shortcut for [A\n]
& May match more than you really want
& <> will match but also <!>, < >, etc
& Be explicit about what you want

& <[a-z]> is better

186

using dot properly

& When dot is combined with quantifiers it
becomes greedy

e <.+> will consume any characters
between the first bracket in the line and
the last one

gpe——e___ —'!r ~e; .

187

using dot properly

ee It’s better to use negated character class
Instead

<[A>]+> if bracketed expression spans lines

<[A>\r\n]+> otherwise

& Lazy quantifier can be used, but they are
not as efficient, due to backtracking

E 158 AR XX E

optimizing unlimited repeats

.
& One of the most common problems is (regexi|regex2|..) i
combining an inner repetition with an
outer one
(regex™®)+
(regex+)*
(.*?bar)*

189

optimizing unlimited repeats

& One of the most common problems is (regex1 lregele“)*
combining an inner repetition with an
outer one
(regex™)+
& If the initial match fails, the number of
ways to split the string between the
quantifiers grows exponentially
(regex+)*
(.*?bar)*

E 190 ¢¢¢¢¢¢¢E

optimizing unlimited repeats

*
& One of the most common problems is (regex1|regex2]..)

combining an inner repetition with an
outer one
(regex™)+
& If the initial match fails, the number of
ways to split the string between the

quantifiers grows exponentially .
| (regex+)
& The problem gets worse when the inner |
regex contains a dot, because it can |

match anything! (.*?bar)*

E 191 ¢¢¢¢¢¢¢E

optimizing unlimited repeats

(regex1|regex2|..)*

d» PCRE has an optimization that helps in
certain cases, and also a hardcoded i (regex*)+
limit for the backtracking |

¢e Ihe best way to solve this is to prevent !
unnecessary backtracking in the first | (regex+)*
place via atomic grouping or |
possessive quantifiers

(-*?bar)*

E 192 ¢¢¢¢¢¢¢E

optimizing unlimited repeats

& Consider the expression
[“’](\W"‘ I\S{I ,2})*[5551

¢ When applied to the string (with final quote), it
matches quickly

¢ When applied to the string (no final quote), it runs 35
times slower!

E 193 ¢¢¢¢¢¢¢E

optimizing unlimited repeats

¢ We can prevent backtracking from going back to the matched
portion by adding a possessive quantifier:

[“’TOAW+|\s{1,2})*+[“’]

¢s With nested unlimited repeats, you should lock up as much of the
string as possible right away

T T R e T ,....:u.... T -_—
"y T ot <

AR XX

te items

ICa

dupl

s
8 - §
o) 52 s
E T w .
Q = C
- mz.._um
N e._de
> 2 S 8¢
@ E 5 8¢
o T & 3
q O S
o .l .
—

AR XX

N
&
Q
—
Q
o

ICa

dupl

c
8 - §
o) 52 g 3
E T w .
Q = C
- mz.._um
— e._de
> 2 S 8¢
@ E 5 8¢
o T g &
S O ®
0 O PO
=2 - <
—

| | MO MR ot R v I B T R DS TR LA e i

S A

> : ._m
= 4
= |
- |
- |
= I
N m
(b

) |

Ll SR e T S I R S S m

(b

e |

© m

& m

"— = |

=

s “

- 3 |

o) “

go =

" |

O) EN G |

C T © £ m

" - O T = i

> 27 832 m

@ © 5 8 3T |

T8 T 8§ m

M e of of m

8 nrv o

iters

AR XX

imi

te items

ICa

dupl
ee Even better, concentrate on del
(?<=[\s.,21]|M)([A\s., 211+ (\s., 21\ 1)++(?=[\s.,?!1| $)

removing

removing

198

5 | i -~ !
> | N | Wmiw
> - —_—
> | o @ (ST
> | m“ec S
2 T._h.ﬂ_nv 2
| M £ S T
| - T -
| ndll S O ¥
i T 7 +
i S -
| O B -~
B : : 5
m O ERc S
i ﬁvme.n_u =
| O C +
i et - O =T
| e O C 6
| ol © o D
| A e <.
I _tt)_
| d“ea < |
| a & =
| mnnv._& .
i s = 2
i NITRE™ =
| | u o
m EE <

. m o
> | L
- S“S S =
> =@ &
3 Y = ¢ g
> = 5 =
> | bl
O EEE I
el S O 5 ¥

nmmm | n S \._P“

- C— -—

O B o £ - |

gl 0 TG M

% £o 5o

O BBk S
cme.n_u.w.g =

0 €9 ¢ +

el C O T T =

gl O € O + L

0 T2 g |

ol © ©F . <

S R s

| |
dm._m._mm..m mhm

Q2 E o & =

mn._&t.mu T

S ST 2

W L s 9 T

EE <

removing

199

RN
separated

te items

ee Even better, concentrate on delimiters

dupl

t match a non-delimiter sequence,

IrsS

that is preceded by a delimiter or

beginning of string
duplicates of the first match,

by delimiters

o F

(?<=[\s., 21 M)(A\s. 2 1+H)(\s., 21N\ ++(?=[\s.,7!]| $)

& Then match atomically one or more

Y O

W T DT el
SRS S

removing

200

N
o
¢

LLLLILY |

ee Even better, concentrate on delimiters
ee First match a non-delimiter sequence,
that is preceded by a delimiter or

beginning of string

& Then match atomically one or more
duplicates of the first match, separated |
by delimiters

& And make sure it is followed by a
delimiter or the end of the string

(?<=[\s., 21| M)(M\s., 2 1+H)(D\s., 21N\ D)++(?=[\s.,?!]| $)

g . — = —_ prans ; - Ly — -

N
(=,
N

LLLLILY |

ee Even better, concentrate on delimiters
ee First match a non-delimiter sequence,
that is preceded by a delimiter or

beginning of string

& Then match atomically one or more
duplicates of the first match, separated |
by delimiters

& And make sure it is followed by a
delimiter or the end of the string

& Replace with $1

(?<=[\s., 21| M)(M\s., 2 1+H)(D\s., 21N\ D)++(?=[\s.,?!]| $)

g . — = —_ prans ; - Ly — -

AR XX

203

TR R T T -..-.a...uu....g.d__&.i\.n.. =
T Bt el AR A s

te items

10N.

ICa

dupl
ieldy. Let’s use PHP interpolat

o |—l
- NN o~ ~ oy
s BEE~ ¢ - ~ o~
o) LTI 25y
- nl.eml—l\|$
- -~ + @V A+ A -~
— ce N e NPT E T -
e < OV Q@O Il »n
N — Y e ¥ 0 -
O W S~ - | ~ ~ ~
c el (0)) ~
= - I 0 S
" Y M
— I 8 ~
7)) —
O E g o
i e - _
r = T S 0
wn ¥ U

E 204 ¢¢¢¢¢¢¢§

& Simple, if the comments are not allowed to nest

& 1/*.*¥N*/1Is replaced with an empty string will work for C-like
comments

e General pattern: /start.*?end/s

¢s For nested comments, a recursive pattern is necessary

E 205 ¢¢¢¢¢¢¢E

extracting markup

¢e¢ Possible to use preg match all () for grabbing marked up
portions

¢¢ But for tokenizing approach, preg split () is better

$s = 'a <I>test</I> of
 markup';

Stokens = preg split(
'1(< /? [a-2A-Z][a-2A-Z20-9]* [~/>]* /? >) lx', Ss, -1,
PREG SPLIT NO EMPTY | PREG SPLIT DELIM CAPTURE);

result is array('a', '','<I>', 'test’', '</I>",
'','of','
', 'markup')

E 206 ¢¢¢¢¢¢¢E

restricting markup

ee Suppose you want to strip all markup except for some allowed
subset, what are your possible approaches?

¢ Use strip tags() - which is limited

¢ Multiple invocations of str replace() or preg replace() to
remove script blocks, etc

¢ Custom tokenizer and processor, or..

E 207 ¢¢¢¢¢¢¢E

$s = preg replace callback(
't < (/?) ([a-2zZA-Z][a-2A-Z0-9]*) (["/>]1*) (/?) > Ix',
'my strip', $s);

ifunction my strip($match) ({ i
i static $allowed tags = array('b’', 'i', 'p', 'br', 'a');

i Stag = Smatch[2]; i
| Sattrs = $match[3]; |
i if (!in_array($tag, Sallowed tags)) return ‘’; i
i if (!empty($match[1l])) return "</S$Stag>"; i
i /* strip evil attributes here */ i
| if ($tag == 'a') { Sattrs = ''; } |
| /* any other kind of processing here */ i
i return "<$tagSattrsSmatch[4]>"; i

208

matching numbers

& Integers are easy: \b\d+\b

& Floating point numbers:

& Can be covered by (\b\d+)?\.\d+\b

209

matching numbers

& To match both integers and floating -y s Y - J
point numbers, either combine them | "o N g
with alternation or use:

((\b\d+)?\.)?\b\d+\b

& [+—-1?7 can be prepended to any of these,
If sign matching is needed

& \b can be substituted by more

appropriate assertions based on the
required delimiters

E 210 ¢¢¢¢¢¢¢E

matching quoted strings

&% A simple case is a string that does not contain escaped quotes
inside it

& Matching a quoted string that spans lines:

“[A!!]*”

& Matching a quoted string that does not span lines:

“[A!!\r\n]*!!

AR XX

o m

S |

@ i

= 0 |

0 |

o £ |

o . = “

5 = |

o} s £ |

T ~ 2] |

» B . I
Q@ = = X 6 |

o BE S
n = =) c O i

O T - o g “

n < & W. @ N i
= o) |

-n s = w © 2 9 c “
+ = 5 5 & < |

— I

e mu ® O O O © |
7)) = < S <£ af “
el e el et I

_t(L = e e“
g © ¢ 3 o =6 8

e a S 0 L € g S |
o O 5 5 O 008 T

e = oD g o S+ o5 |
s £ £ &5 %883¢F

8 ¢ 5 5% 888§
O © pC (/) - qo.._“m“
u = O ® ® O acwcm
N - _ m
= 2 m
O . = _ 2 # .,
t el c - “
S S “
— |

— |
- = “
N |

i 212 ¢¢¢¢¢¢¢E

matching e-mail addresses

& Do | look crazy to you?
& The complete regex is about a book page long in 10-point type

& Buy a copy of Jeffrey Friedl’s book and steal it from there

E 213 AR XX E

matching phone numbers

¢e Assuming we want to match US/Canada-style phone numbers
800-555-1212 1-800-555-1212
800.555.1212 1.800.555.1212
(800) 555-1212 1 (800) 555-1212

& How would you do it?

E 214 ¢¢¢¢¢¢¢E

matching phone numbers

& The simplistic approach could be:
(1L .-D?2\@\d{3})?[.-1\d{3} [.-1\d{4}
& But this would result in a lot of false positives:

1.(800)-555 1212 800).555-1212
1-800 555-1212 (800 555-1212

E 215 ¢¢¢¢¢¢¢E

|
10 INAA{3})[N\d{3}-\d{4}

or

just match the third format

A anchor to the start of the string
:1([.-D)? may have 1. or 1- (remember the separator)
\d{3} three digits
((2(1) if we had a separator
\1 | match the same (and remember), otherwise
[.-1)) match . or - as a separator (and remember)
\d{3} another three digits
\2 same separator as before
\d{4} final four digits

anchor to the end of the string

216

¢ Don’t do everything in regex -
a lot of tasks are best left to
PHP

& Use string functions for simple
tasks

& Make sure you know how
backtracking works

217

e aware of the context

-3
O W

apture only what you intend to
use

¢e Don’t use single-character
classes

218

& Lazy vs. greedy, be specific

& Put most likely alternative first
In the alternation list

o Think!

RN

Thank You!

Questions?

