
Andrei Zmievski, Yahoo! Inc.
andrei@gravitonic.com

php|tek 2006
Thursday 15:30-16:30

Andrei’s Regex Clinic

Andrei Zmievski, Yahoo! Inc.
andrei@gravitonic.com

Download this presentation from http://www.gravitonic.com/talks/

2

php|tek 2006
Thursday 15:30-16:30

Andrei’s Regex Clinic

Andrei Zmievski, Yahoo! Inc.
andrei@gravitonic.com

Download this presentation from http://www.gravitonic.com/talks/

php|tek 2006
Thursday 15:30-16:30

Andrei’s Regex Clinic

Andrei Zmievski, Yahoo! Inc.
andrei@gravitonic.com

Download this presentation from http://www.gravitonic.com/talks/

php|tek 2006
Thursday 15:30-16:30

Andrei’s Regex Clinic

about me

PHP core developer since 1999

Author of PHP-GTK, Smarty

Core software engineer at Yahoo! Inc.

Email: andrei@gravitonic.com

Introduction

Syntax

API

Regex Toolkit

Q & A/.*/
what’s the plan?

regular... expressions

E
xc

it
ed

regular... expressions

P
uz

zl
ed

regular... expressions

A
ng

ry

regular... expressions

S
ca

re
d

regular... expressions

C
o

nfi
d

en
t

a bit of history

Regular expressions can be
traced back to early research on
the human nervous system

a bit of history

Neurophysiologists Warren
McCulloch and Walter Pitts
developed a mathematical way
of describing the neural
networks

a bit of history

Later, mathematician Stephen
Kleene published a paper that
introduced the concept of
regular expressions that were
used to describe “the algebra of
regular sets”

a bit of history

Ken Thompson, one of the
fathers of Unix, found a practical
application for them in the
various tools of the early OS

g

re
p

 “
^

[A
-Z

]”
 *

.t
xt

what’s it good for?

Literal string searches are fast but
inflexible

With regular expressions you can:

Find out whether a certain pattern
occurs in the text

Locate strings matching a pattern and
remove them or replace them with
something else

Extract the strings matching the pattern

terminology

Regex
a pattern describing a set of strings

a b c d e f

terminology

Subject String
text that the regex is applied to

apple

terminology

Match

apple

a portion of the string that is successfully
described by the regex

a

terminology

Engine
A program or a library that obtains
matches given a regex and a string

PCRE

regex flavors

Regular expressions are like ice cream

Common base

Many flavors

regex flavors

Three main types of engines that determine how
matching is done:

DFA

Traditional NFA

POSIX NFA

For our purposes we discuss the regex flavor that
PHPs’ Perl-compatible regular expressions use

how an NFA engine works

The engine bumps along the
string trying to match the
regex

Sometimes it goes back and
tries again

how an NFA engine works

Two basic things to
understand about the engine

It will always return the
earliest (leftmost) match it
finds

The topic of the day is isotopes.

Given a choice it always
favors match over a non-
match

The topic of the day is isotopes.The topic of the day is isotopes.

color legend

regular expression

subject string

match

Syntax

building blocks

Regexes are like LEGOs

Small pieces combined into larger
ones using connectors

Arbitrarily complex

characters

ordinary
a 40 Kx

special

^
!.

?
*

characters

Special set is a well-defined subset of
ASCII

Ordinary set consist of all characters
not designated special

Special characters are also called
metacharacters

a 40 Kx

^
!.

?
*

matching literals

The most basic regex consists of a
single ordinary character

It matches the first occurrence of that
character in the string

Characters can be added together to
form longer regexes

123

extended characters

To match an extended character, use \xhh notation where hh are
hexadecimal digits

To match Unicode characters (in UTF-8 mode) mode use \x{hhh..}
notation

extended characters

For example, the following regex matches my name in Cyrillic:

\x{0410}\x{043d}\x{0434}\x{0440}\x{0435}\x{0439}

Андрей

metacharacters

To use one of these literally, escape it, that
is prepend it with a backslash . [] ()

^ $
* + ?
{} |

$\

metacharacters

. [] ()
^ $

* + ?
{} |

To escape a sequence of characters, put
them between \Q and \E

Price is \Q$12.36\E

Price is $12.36

will match

metacharacters

. [] ()
^ $

* + ?
{} |

So will the backslashed version

Price is \$12\.36

Price is $12.36

will match

character classes

Consist of a set of characters placed
inside square brackets

Matches one and only one of the
characters specified inside the class

[]

character classes

matches an English vowel (lowercase)

matches surf or turf

[]

[aeiou]

[st]urf

negated classes

Placing a caret as the first character after the
opening bracket negates the class

Will match any character not in the class,
including newlines

[^<>] would match a character that is not left or
right bracket

[^]

character ranges
Placing a dash (-) between two
characters creates a range
from the first one to the
second one

Useful for abbreviating a list of
characters

[-]

[a-z]

character ranges
Ranges can be reversed

[z-a]

[-]

character ranges
Ranges can be reversed

A class can have more than
one range and combine
ranges with normal lists

[a-z0-9:]

[-]

character ranges

[0–9/] matches a digit or a slash

[z-w] matches z, y, x, or w

[a-z0–9] matches digits and lowercase letters

[\x01-\x1f] matches control characters

[-]

shortcuts for ranges

Some ranges are so frequently used that
it would be nice to have...

[-]

!

shortcuts

shortcuts for ranges

 \w word character [A-Za-z0–9_]

 \d decimal digit [0–9]

 \s whitespace [\n\r\t\f]

 \W not a word character [^A-Za-z0–9_]

 \D not a decimal digit [^0–9]

 \S not whitespace [^ \n\r\t\f]

[-]

classes and metacharacters

Inside a character class, most
metacharacters lose their meaning

classes and metacharacters

Inside a character class, most
metacharacters lose their meaning

Exceptions are:] \

^ -

classes and metacharacters

Inside a character class, most
metacharacters lose their meaning

Exceptions are:

closing bracket

] \

^ -

classes and metacharacters

Inside a character class, most
metacharacters lose their meaning

Exceptions are:

closing bracket

backslash

] \

^ -

classes and metacharacters

Inside a character class, most
metacharacters lose their meaning

Exceptions are:

closing bracket

backslash

caret

] \

^ -

classes and metacharacters

Inside a character class, most
metacharacters lose their meaning

Exceptions are:

closing bracket

backslash

caret

dash

] \

^ -

classes and metacharacters

To use them literally, either escape them
with a backslash or put them where they

do not have special meaning

[ab\]]
[ab^]
[a-z-]

dot metacharacter
By default matches any single
character

.

dot metacharacter
By default matches any single
character

Except a newline!

.

!

dot metacharacter
By default matches any single
character

Except a newline!

.

\n!

dot metacharacter .

[^\n]Is equivalent to

dot metacharacter .

Use dot carefully - it might match
something you did not intend

12.45 will match literal 12.45

But it will also match these:

12345

12945

12a45

12-45

78812 4583978812 45839

quantifiers Or, Hit Me Baby One More Time

quantifiers

Confucius said,

"Real knowledge is to know the
extent of one's ignorance.“

quantifiers

We are almost never sure about
the contents of the text.

quantifiers

Quantifiers help us deal with this
uncertainty

?

*

+

{ }

quantifiers

They specify how many times a
regex component must repeat in

order for the match to be
successful

?

*

+

{ }

repeatable components

a
literal character

.
dot metacharacter

\w \d \s
\W \D \S

range shortcuts

[]
character class

subpattern

backreference

zero-or-one

Indicates that the preceding component is optional

Regex welcome!? will match either welcome or welcome!

Regex super\s?strong means that super and strong may have an
optional whitespace character between them

Regex hello[!?]? Will match hello, hello!, or hello?

?

one-or-more

Indicates that the preceding component has to appear once or
more

Regex a+h will match ah, aah, aaah, etc

Regex -\d+ will match negative integers, such as -33

Regex [^”]+ means to match a sequence (more than one) of
characters until the next quote

+

zero-or-more

Indicates that the preceding component can match zero or more
times

Regex \d+\.\d* will match 2., 3.1, 0.001

Regex <[a-z][a-z0–9]*> will match an opening HTML tag with no
attributes, such as or <h2>, but not <> or </i>

*

general repetition

Specifies the minimum and the maximum number of times a
component has to match

Regex ha{1,3} matches ha, haa, haaa

Regex \d{8} matches exactly 8 digits

{ }

general repetition

If second number is omitted, no upper range is set

Regex go{2,}al matches gooal, goooal, gooooal, etc

{ }

general repetition { }
{0,1} = ?

{1,} = +

{0,} = *

greediness

“One of the weaknesses of our age is our
apparent inability to distinguish our needs
from our greeds.” — Don Robinson

greediness n., matching as much as
possible, up to a limit

greediness

PHP 5? PHP 5 is better than Perl 6PHP 5

\d{2,4} 10/26/20042004

greediness

Quantifiers try to grab as much as
possible by default

Applying <.+> to <i>greediness</i>
matches the whole string rather than
just <i>

greediness

If the entire match fails because they
grabbed too much, then they are forced
to give up as much as needed to make
the rest of regex succeed

greediness

To find words ending in ness, you will
probably use \w+ness

On the first run \w+ takes the whole
word

But since ness still has to match, it gives
up the last 4 characters and the match
succeeds

overcoming greediness

The simplest solution is to
make the repetition operators
non-greedy, or lazy

Lazy quantifiers grab as little
as possible

If the overall match fails, they
grab a little more and the
match is tried again

overcoming greediness

To make a greedy quantifier
lazy, append ?

Note that this use of the
question mark is different from
its use as a regular quantifier

*?

+?

{ , }?

??

overcoming greediness

*?

+?

{ , }?

??

Applying <.+?>

to <i>greediness</i>

gets us <i>

<i>

overcoming greediness

Another option is to use
negated character classes

More efficient and clearer than
lazy repetition

overcoming greediness

<.+?> can be turned into <[^>]+>

Note that the second version
will match tags spanning
multiple lines

Single-line version: <[^>\r\n]+>

assertions and anchors

An assertion is a regex operator that

expresses a statement about the current matching point

consumes no characters

assertions and anchors

The most common type of an assertion
is an anchor

Anchor matches a certain position in
the subject string

caret

Caret, or circumflex, is an anchor that
matches at the beginning of the subject
string

^F basically means that the subject
string has to start with an F

^

^F

FandangoF

dollar sign

Dollar sign is an anchor that matches at
the end of the subject string or right
before the string-ending newline

\d$ means that the subject string has to
end with a digit

The string may be top 10 or top 10\n,
but either one will match

$

\d$

top 100

multiline matching

Often subject strings consist of
multiple lines

If the multiline option is set:

Caret (^) also matches immediately
after any newlines

Dollar sign ($) also matches
immediately before any newlines

^t.+

one
two
three
two
three

absolute start/end

Sometimes you really want to match
the absolute start or end of the subject
string when in the multiline mode

These assertions are always valid:

\A matches only at the very beginning

\z matches only at the very end

\Z matches like $ used in single-line
mode

\At.+

three
tasty
truffles

three

word boundaries

A word boundary is a position in the
string with a word character (\w) on one
side and a non-word character (or
string boundary) on the other

\b matches when the current position is
a word boundary

\B matches when the current position is
not a word boundary

\b \B

\bto\b

right to vote|to|

word boundaries

A word boundary is a position in the
string with a word character (\w) on one
side and a non-word character (or
string boundary) on the other

\b matches when the current position is
a word boundary

\B matches when the current position is
not a word boundary

\b \B

\bto\b

come together

word boundaries

A word boundary is a position in the
string with a word character (\w) on one
side and a non-word character (or
string boundary) on the other

\b matches when the current position is
a word boundary

\B matches when the current position is
not a word boundary

\b \B

\B2\B

doc2html2

subpatterns

Parentheses can be used group a part of
the regex together, creating a subpattern

You can apply regex operators to a
subpattern as a whole

()

grouping

Regex is(land)? matches both is and
island

Regex (\d\d,)*\d\d will match a comma-
separated list of double-digit numbers

()

capturing subpatterns

All subpatterns by default are capturing

A capturing subpattern stores the corresponding matched portion
of the subject string in memory for later use

()

capturing subpatterns

Subpatterns are numbered by counting
their opening parentheses from left to
right

Regex (\d\d-(\w+)-\d{4}) has two
subpatterns

()
(\d\d-(\w+)-\d{4})

12-May-2004

capturing subpatterns ()
(\d\d-(\w+)-\d{4})

12-May-2004

(\w+)
Subpatterns are numbered by counting
their opening parentheses from left to
right

Regex (\d\d-(\w+)-\d{4}) has two
subpatterns

When run against 12-May-2004 the
second subpattern will capture May

May

non-capturing subpatterns

The capturing aspect of subpatterns is not always necessary

It requires more memory and more processing time

non-capturing subpatterns

Using ?: after the opening parenthesis makes a subpattern be a
purely grouping one

Regex box(?:ers)? will match boxers but will not capture anything

The (?:) subpatterns are not included in the subpattern numbering

named subpatterns

It can be hard to keep track of subpattern numbers in a
complicated regex

Using ?P<name> after the opening parenthesis creates a named
subpattern

Named subpatterns are still assigned numbers

Pattern (?P<number>\d+) will match and capture 99 into subpattern
named number when run against 99 bottles

alternation |

Alternation operator allows testing several sub-expressions at a
given point

The branches are tried in order, from left to right, until one
succeeds

Empty alternatives are permitted

Regex sailing|cruising will match either sailing or cruising

alternation |

Since alternation has the lowest precedence, grouping is often
necessary

sixth|seventh sense will match the word sixth or the phrase
seventh sense

(sixth|seventh) sense will match sixth sense or seventh sense

alternation |

Remember that the regex engine is eager

It will return a match as soon as it finds one

camel|came|camera will only match came when run against
camera

Put more likely regex as the first alternative

backtracking

Also known as “if at first you
don’t succeed, try, try again”

When faced with several
options it could try to achieve a
match, the engine picks one
and remembers the others

backtracking

If the picked option does not
lead to an overall successful
match, the engine backtracks
to the decision point and tries
another option

backtracking

This continues until an overall
match succeeds or all the
options are exhausted

The decision points include
quantifiers and alternation

backtracking

Two important rules to
remember

With greedy quantifiers the engine
always attempts the match, and
with lazy ones it delays the match

If there were several decision
points, the engine always goes
back to the most recent one

backtracking example

\d+00 12300

start

backtracking example

\d+00 12300

add 1

1

backtracking example

\d+00 12300

add 2

12

backtracking example

\d+00 12300

add 3

123

backtracking example

\d+00 12300

add 0

1230

backtracking example

\d+00 12300

add 0

12300

backtracking example

\d+00 12300

string exhausted
still need to match 00

12300

backtracking example

\d+00 12300

give up 0

1230

backtracking example

\d+00 12300

give up 0

123

backtracking example

\d+00 12300

add 00

12300

backtracking example

\d+00 12300

success

12300

backtracking example

\d+ff 123dd

start

backtracking example

\d+ff 123dd

add 1

1

backtracking example

\d+ff 123dd

add 2

12

backtracking example

\d+ff 123dd

add 3

123

backtracking example

\d+ff 123dd

cannot match f here

123

backtracking example

\d+ff 123dd

give up 3
still cannot match f

12

backtracking example

\d+ff 123dd

give up 2
still cannot match f

1

backtracking example

\d+ff 123dd

cannot give up more
because of +

1

backtracking example

\d+ff 123dd

failure

backtracking example

ab??c abc

start

backtracking example

ab??c abc

add a

a

backtracking example

ab??c abc

skip matching b at first

a

backtracking example

ab??c abc

c cannot match here

a

backtracking example

ab??c abc

go back and try
matching b now

ab

backtracking example

ab??c abc

c can be matched

abc

backtracking example

ab??c abc

success

abc

atomic grouping

Disabling backtracking can be useful

The main goal is to speed up failed
matches, especially with nested
quantifiers

atomic grouping

(?>regex) will treat regex as a single
atomic token, no backtracking will
occur inside it

All the saved states are forgotten

atomic grouping

(?>\d+)ff will lock up all available digits
and fail right away if the next two
characters are not ff

Atomic groups are not capturing

possessive quantifiers

Atomic groups can be arbitrarily complex
and nested

Possessive quantifiers are simpler and
apply to a single repeated item

possessive quantifiers

To make a quantifier possessive append
a single +

\d++ff is equivalent to (?>\d+)ff

possessive quantifiers

Other ones are *+, ?+, and {m,n}+

Possessive quantifiers are always greedy

do not over-optimize

Keep in mind that atomic grouping and possessive quantifiers can
change the outcome of the match

When run against string abcdef

\w+d will match abcd

\w++d will not match at all

\w+ will match the whole string !

backreferences

A backreference is an alias to a
capturing subpattern

It matches whatever the referent
capturing subpattern has matched

\n

backreferences

(re|le)\w+\1 matches words that start
with re or le and end with the same
thing

For example, retire and legible, but not
revocable or lecture

Reference to a named subpattern can
be made with (?P=name)

\n

lookaround

Assertions that test whether the characters before or after the
current point match the given regex

Consume no characters

Do not capture anything

Includes lookahead and lookbehind

positive lookahead

Tests whether the characters after the
current point match the given regex

(\w+)(?=:)(.*) matches surfing: a sport
but semicolon ends up in the second
subpattern

(?=)

negative lookahead

Tests whether the characters after the
current point do not match the given
regex

fish(?!ing) matches fish not followed by
ing

Will match fisherman and fished

(?!)

negative lookahead (?!)

Difficult to do with character classes

fish[^i][^n][^g] might work but will
consume more than needed and fail on
subjects shorter than 7 letters

Character classes are no help at all with
something like fish(?!hook|ing)

positive lookbehind

Tests whether the characters
immediately preceding the current point
match the given regex

The regex must be of fixed size, but
branches are allowed

(?<=foo)bar matches bar only if
preceded by foo, e.g. my foobar

(?<=)

negative lookbehind

Tests whether the characters
immediately preceding the current point
do not match the given regex

Once again, regex must be of fixed size

(?<!foo)bar matches bar only if not
preceded by foo, e.g. in the bar but not
my foobar

(?<!)

conditionals
Conditionals let you apply a regex selectively or to choose between
two regexes depending on a previous match

 (?(condition)yes-regex)

 (?(condition)yes-regex|no-regex)

There are 3 kinds of conditions

Subpattern match

Lookaround assertion

Recursive call (not discussed here)

subpattern conditions

This condition is satisfied if the capturing subpattern number n has
previously matched

(“)? \b\w+\b (?(1)”) matches words optionally enclosed by quotes

There is a difference between (“)? and (“?) in this case: the second
one will always capture

(?(n))

assertion conditions

This type of condition relies on lookaround assertions to choose
one path or the other

 href=(? (?=[‘”]) ([“’])\S+\1 | \S+)

Matches href=, then

If the next character is single or double quote match a sequence of
non-whitespace inside the matching quotes

Otherwise just match it without quotes

inline options
The matching can be modified by options you
put in the regular expression

(?i) enables case-insensitive mode

(?m) enables multiline matching for ^ and $

(?s) makes dot metacharacter match newline also

(?x) ignores literal whitespace

(?U) makes quantifiers ungreedy (lazy) by default

inline options

(?i)

(?m)

(?s)

(?x)

(?U)

Options can be combined and unset

(?im-sx)

At top level, apply to the whole pattern

Localized inside subpatterns

(a(?i)b)c

comments

Here’s a regex I wrote when working on Smarty templating engine
^\$\w+(?>(\[(\d+|\$\w+|\w+(\.\w+)?)\])|((\.|->)\$?\w+))*(?>\|@?\w+(:(?>"[^"\\\\]*(?:\\\\.[^"\\\\]*)*"|\'[^\'\\\\]*(?\\\\.[^\'\\\\]*) *\'|[^|]+))*)*$

?#

comments ?#

Let me blow that up for you

^\$\w+(?>(\[(\d+|\$\w+|\w+(\.\w+)?)\])|
((\.|->)\$?\w+))*(?>\|@?\w+(:(?>"[^"\\\\]*

(?:\\\\.[^"\\\\]*)*"|\'[^\'\\\\]*
(?\\\\.[^\'\\\\]*)*\'|[^|]+))*)*$

Would you like some comments with that?

comments

Most regexes could definitely use some
comments

(?#…) specifies a comment

?#

\d+(?# match some digits)

comments

If (?x) option is set, anything after #
outside a character class and up to the
next newline is considered a comment

To match literal whitespace, escape it

?#

(?x) \w+ # start with word characters
 [?!] # and end with ? or !

Regex API

Regex API

Perl-compatible regex API (PCRE) was introduced in PHP 3.0.9

Starting with PHP 4.2.0 the API is enabled by default

Uses consistent pattern syntax

All functions start with preg_ prefix

pattern syntax
The regex must be enclosed in
delimiters and passed as a single- or
double-quoted string‘/[abc]+/’

“/[abc]+/”

pattern syntax
The regex must be enclosed in
delimiters and passed as a single- or
double-quoted string

Delimiter character cannot be
alphanumeric or backslash

z[abc]+z

NO!

pattern syntax
The regex must be enclosed in
delimiters and passed as a single- or
double-quoted string

Delimiter character cannot be
alphanumeric or backslash

If the delimiter character has to be used
in the regex, escape it with a backslash

/<\/i>/

pattern syntax
The regex must be enclosed in
delimiters and passed as a single- or
double-quoted string

Delimiter character cannot be
alphanumeric or backslash

If the delimiter character has to be used
in the regex, escape it with a backslash

The ending delimiter may optionally be
followed by pattern modifiers/<a.+?>/is

pattern modifiers
The first five should be already familiar

/i enables case-insensitive mode

/m enables multiline matching for ^ and $

/s makes dot metacharacter match newline also

/x ignores literal whitespace and allows #
comments

/U makes quantifiers ungreedy (lazy) by default

pattern modifiers
But there are some more

/A anchors the pattern at the beginning of string
(similar to \A assertion)

/S performs additional analysis on the pattern

/u enables UTF-8 mode

/e explained in preg_replace() section

pattern examples

Valid:

/\d{4}-\d\d(-\d\d)?/

/<(h\d)>.*?<\/\1>/iU

!^From: .* rasmus@!xm

pattern examples

Invalid:

!/.+$ - missing end delimiter

/ab(c|d)/J – unknown modifier J

/\s?*/ - compilation failure, misapplied
quantifier *

PHP metacharacter issues

PHP can interpret regex metacharacters as its own

To avoid confusion:

Backslash the common metacharacters

Use single quotes to make life easier

PHP metacharacter issues

Even with single quotes, the “leaning
toothpick” syndrome may occur

To match a single backslash, one has
to use ‘/\\\\/’ ‘/\\\\/’

PHP metacharacter issues

Even with single quotes, the “leaning
toothpick” syndrome may occur

To match a single backslash, one has
to use ‘/\\\\/’

First, PHP interprets it as ‘/\\/’
‘/\\/’\\

PHP metacharacter issues

Even with single quotes, the “leaning
toothpick” syndrome may occur

To match a single backslash, one has
to use ‘/\\\\/’

First, PHP interprets it as ‘/\\/’

Then, regex engine sees it as an
escaped backslash metacharacter

\\

locales

Caseless matching and character class determination are affected
by the current locale

The locale can be changed via PHP’s setlocale() function

For example, set_locale(‘fr_FR’) will set the French locale
which will be used by the engine for \w for example

to save time...

Since all PCRE functions are described in
the manual in exquisite detail, we’ll just
have a brief look at them...

preg_match(string regex, string subject,
array matches, int flags, int offset)

Tries to find the first occurrence of a pattern described by regex in
the string

Returns 0 or 1 (FALSE on error)

If matches is provided, it is filled with the match results

Stops after the first successful match

Best used for validation

preg_match(string regex, string subject,
array matches, int flags, int offset)

preg_match(‘!\w+!’, ‘a(bc)d’); = 1
preg_match(‘!\w+!’, ‘**--**’); = 0

preg_match(‘!\b\d+(\.\d+)?\b!’,
 ‘price: $3.14 for 2’, $match); = 1
 $match[0] = ‘3.14’
 $match[1] = ‘.14’

preg_match(‘!\b\d+(?P<cents>\.\d+)?\b!’,
 ‘price: $3.14 for 2’, $match); = 1
 $match[0] = ‘3.14’
 $match[1] = ‘.14’
 $match[‘cents’] = ‘.14’

preg_match_all(string regex, string subject,
array matches, int flags, int offset)

Tries to find all patterns described by regex in the string

Matching continues from the end of the last match

Return number of successful matches or FALSE on error

preg_match_all(‘!\b\d+(\.\d+)?\b!’,
 ’12.2 times 2 is 24.4’, $match); = 3
 $matches[0] = array(’12.2’, ‘2’, ‘24.4’)
 $matches[1] = array(‘.2’, ‘’, ‘.4’)

preg_replace(mixed regex, mixed replacement,
mixed subject, int limit)

Applies regex to subject and replaces matches with replacement

limit specifies how many matches to replace, -1 means no limit (the
default)

Returns modified subject if matches are found

regex, subject, and replacement can be one-dimensional arrays

Allows for multiple searches and replacements on multiple strings
at once

preg_replace(mixed regex, mixed replacement,
mixed subject, int limit)

replacement may contain references of the form \\n or $n (the
preferred syntax)

Such reference will be replaced by the text matched by the n’th
capturing subpattern

preg_replace(‘!by (\w+) (\w+)!’, ‘- $2, $1‘,
‘Xdebug by Derick Rethans’);
 = ‘Xdebug - Rethans, Derick’

preg_replace(mixed regex, mixed replacement,
mixed subject, int limit)

/e modifier on regex treats replacement as PHP code

The references are resolved, the code is evaluated, and the result is
used as the replacement

If the resulting PHP code is invalid, a parse error will be issued

preg_replace(‘!\d+!e’, ‘($0+1)’, ‘2 is less than 3’);
= ‘3 is less than 4’

preg_replace_callback(mixed regex, mixed callback,
mixed subject, int limit)

Identical to preg_replace() except that the replacement is
specified by a callback function

For each match the callback is invoked with the match info and is
supposed to return the replacement string

preg_split(string regex, string subject, int limit,
int flags)

Splits subject along boundaries matched by regex

Returns an array of split pieces

limit determines the maximum number of pieces, -1 means no limit
(the default)

The type of splitting can be controlled by flags

preg_split(‘/[?¿,.\s]+/’, ‘¿Donde esta... nearest bar?’);
 = array(‘’, ‘Donde’, ‘esta’, ‘nearest’, ‘bar’, ‘’)

preg_split(‘/[?¿,.\s]+/’, ‘¿Donde esta... nearest bar?’,
 3, PREG_SPLIT_NO_EMPTY);
 = array(‘Donde’, ‘esta’, ‘nearest bar?’)

preg_grep(string regex, array input, int flags)

Applies regex to each element of input array

Return a new array consisting only of elements that matched

If flags if PREG_GREP_INVERT, only the elements that did not
match will be returned

Regex Toolkit

regex toolkit

In your day-to-day development, you will frequently find yourself
running into situations calling for regular expressions

It is useful to have a toolkit from which you can quickly draw the
solution

It is also important to know how to avoid problems in the regexes
themselves

matching vs. validation

In matching (extraction) the regex must
account for boundary conditions

In validation your boundary conditions
are known – the whole string

matching vs. validation

Matching an English word starting with
a capital letter

\b[A-Z][a-zA-Z’-]*\b

Validating that a string fulfills the same
condition

^[A-Z][a-zA-Z’-]*$

Do not forget ^ and $ anchors for
validation!

using dot properly

One of the most used operators

One of the most misused

Remember - dot is a shortcut for [^\n]

May match more than you really want

<.> will match but also <!>, < >, etc

Be explicit about what you want

<[a-z]> is better

using dot properly

When dot is combined with quantifiers it
becomes greedy

<.+> will consume any characters
between the first bracket in the line and
the last one

Including any other brackets!

using dot properly

It’s better to use negated character class
instead

<[^>]+> if bracketed expression spans lines

<[^>\r\n]+> otherwise

Lazy quantifiers can be used, but they
are not as efficient, due to backtracking

optimizing unlimited repeats

One of the most common problems is
combining an inner repetition with an
outer one

(regex1|regex2|..)*

(regex*)+

(regex+)*

(.*?bar)*

optimizing unlimited repeats

One of the most common problems is
combining an inner repetition with an
outer one

If the initial match fails, the number of
ways to split the string between the
quantifiers grows exponentially

(regex1|regex2|..)*

(regex*)+

(regex+)*

(.*?bar)*

optimizing unlimited repeats

One of the most common problems is
combining an inner repetition with an
outer one

If the initial match fails, the number of
ways to split the string between the
quantifiers grows exponentially

The problem gets worse when the inner
regex contains a dot, because it can
match anything!

(regex1|regex2|..)*

(regex*)+

(regex+)*

(.*?bar)*

optimizing unlimited repeats

PCRE has an optimization that helps in
certain cases, and also has a
hardcoded limit for the backtracking

The best way to solve this is to prevent
unnecessary backtracking in the first
place via atomic grouping or
possessive quantifiers

(regex1|regex2|..)*

(regex*)+

(regex+)*

(.*?bar)*

optimizing unlimited repeats

Consider the expression that is supposed to match a sequence of
words or spaces inside a quoted string

[“’](\w+|\s{1,2})*[“’]

When applied to the string “aaaaaaaaaa” (with final quote), it
matches quickly

When applied to the string “aaaaaaaaaa (no final quote), it runs 35
times slower!

optimizing unlimited repeats

We can prevent backtracking from going back to the matched
portion by adding a possessive quantifier:

[“’](\w+|\s{1,2})*+[“’]

With nested unlimited repeats, you should lock up as much of the
string as possible right away

removing duplicate items

Naïve implementation:

Match ([a-z]+) \1
Replace with $1
Has problems with This is island

removing duplicate items

Naïve implementation:

Match ([a-z]+) \1
Replace with $1
Has problems with This is island

removing duplicate items

Better approach:

Match \b([a-z]+) \1\b
Replace with $1
Handles This is island just fine

removing duplicate items
Even better, concentrate on delimiters

(?<=[\s.,?!]|^)([^\s.,?!]+)([\s.,?!]\1)++(?=[\s.,?!]|$)

removing duplicate items
Even better, concentrate on delimiters

First match a non-delimiter sequence

(?<=[\s.,?!]|^)([^\s.,?!]+)([\s.,?!]\1)++(?=[\s.,?!]|$)([^\s.,?!]+)

removing duplicate items
Even better, concentrate on delimiters

First match a non-delimiter sequence,
that is preceded by a delimiter or
beginning of string

(?<=[\s.,?!]|^)([^\s.,?!]+)([\s.,?!]\1)++(?=[\s.,?!]|$)(?<=[\s.,?!]|^)([^\s.,?!]+)

removing duplicate items
Even better, concentrate on delimiters

First match a non-delimiter sequence,
that is preceded by a delimiter or
beginning of string

Then match atomically one or more
duplicates of the first match, separated
by delimiters

(?<=[\s.,?!]|^)([^\s.,?!]+)([\s.,?!]\1)++(?=[\s.,?!]|$)(?<=[\s.,?!]|^)([^\s.,?!]+)([\s.,?!]\1)++

removing duplicate items
Even better, concentrate on delimiters

First match a non-delimiter sequence,
that is preceded by a delimiter or
beginning of string

Then match atomically one or more
duplicates of the first match, separated
by delimiters

And make sure it is followed by a
delimiter or the end of the string

(?<=[\s.,?!]|^)([^\s.,?!]+)([\s.,?!]\1)++(?=[\s.,?!]|$)

removing duplicate items
Even better, concentrate on delimiters

First match a non-delimiter sequence,
that is preceded by a delimiter or
beginning of string

Then match atomically one or more
duplicates of the first match, separated
by delimiters

And make sure it is followed by a
delimiter or the end of the string

Replace with $1

(?<=[\s.,?!]|^)([^\s.,?!]+)([\s.,?!]\1)++(?=[\s.,?!]|$)

removing duplicate items
This is unwieldy. Let’s use PHP variable
interpolation.

$dlm = '[\s.,?!]';
$n_dlm = '[^\s.,?!]';
$s = preg_replace(”/
 (?<=$dlm|^)
 ($n_dlm+)
 ($dlm++\\1)+
 (?=$dlm|$)
 /x”, '$1', $s);

removing multiline comments

Simple, if the comments are not allowed to nest

!/*.*?*/!s replaced with an empty string will work for C-like
comments

General pattern: /start.*?end/s

For nested comments, a recursive pattern is necessary

extracting markup
Possible to use preg_match_all() for grabbing marked up
portions

But for tokenizing approach, preg_split() is better

$s = 'a <I>test</I> of
 markup';
$tokens = preg_split(
 '!(< /? [a-zA-Z][a-zA-Z0-9]* [^/>]* /? >) !x', $s, -1,
 PREG_SPLIT_NO_EMPTY | PREG_SPLIT_DELIM_CAPTURE);

result is array('a','','<I>','test','</I>',
 '','of','
','markup')

restricting markup

Suppose you want to strip all markup except for some allowed
subset. What are your possible approaches?

Use strip_tags() - which has limited functionality

Multiple invocations of str_replace() or preg_replace() to
remove script blocks, etc

Custom tokenizer and processor, or..

restricting markup
$s = preg_replace_callback(
 '! < (/?) ([a-zA-Z][a-zA-Z0-9]*) ([^/>]*) (/?) > !x',
 'my_strip', $s);

function my_strip($match) {
 static $allowed_tags = array('b', 'i', 'p', 'br', 'a');
 $tag = $match[2];
 $attrs = $match[3];
 if (!in_array($tag, $allowed_tags)) return ‘’;
 if (!empty($match[1])) return "</$tag>";
 /* strip evil attributes here */
 if ($tag == 'a') { $attrs = ''; }
 /* any other kind of processing here */
 return "<tagattrs$match[4]>";
}

matching numbers

Integers are easy: \b\d+\b

Floating point numbers:

integer.fractional

.fractional

Can be covered by (\b\d+)?\.\d+\b

matching numbers

To match both integers and floating
point numbers, either combine them
with alternation or use:
((\b\d+)?\.)?\b\d+\b

[+-]? can be prepended to any of these,
if sign matching is needed

\b can be substituted by more
appropriate assertions based on the
required delimiters

matching quoted strings

A simple case is a string that does not contain escaped quotes
inside it

Matching a quoted string that spans lines:

“[^”]*”

Matching a quoted string that does not span lines:

“[^”\r\n]*”

matching quoted strings
Matching a string with escaped quotes inside

“([^”]+|(?<=\\\\)”)*+”

(a component that is

[^”]+ a segment without any quotes

| or

(?<=\\\\)” a quote preceded by a backslash

)*+ component repeated zero or more times
without backtracking

“ opening quote

“ closing quote

matching e-mail addresses

Yeah, right

The complete regex is about as long as a book page in 10-point type

Buy a copy of Jeffrey Friedl’s book and steal it from there

matching phone numbers

Assuming we want to match US/Canada-style phone numbers

800-555-1212 1-800-555-1212

800.555.1212 1.800.555.1212

(800) 555-1212 1 (800) 555-1212

How would we do it?

matching phone numbers

The simplistic approach could be:

(1[.-])? \(? \d{3} \)? [.-] \d{3} [.-] \d{4}

But this would result in a lot of false positives:

1.(800)-555 1212 800).555-1212

1-800 555-1212 (800 555-1212

matching phone numbers
^(?: anchor to the start of the string

(?:1([.-]))? may have 1. or 1- (remember the separator)

\d{3} three digits

((?(1) if we had a separator

\1 | match the same (and remember), otherwise

[.-])) match . or - as a separator (and remember)

\2 same separator as before

final four digits\d{4}
| or

1[]?\(\d{3}\)[]\d{3}-\d{4} just match the third format

\d{3} another three digits

)$ anchor to the end of the string

tips

Don’t do everything in regex –
a lot of tasks are best left to
PHP

Use string functions for simple
tasks

Make sure you know how
backtracking works

tips

Be aware of the context

Capture only what you intend to
use

Don’t use single-character
classes

tips

Lazy vs. greedy, be specific

Put most likely alternative first
in the alternation list

Think!

Thank You!

Questions?

