
Andrei Zmievski © 2005

♡PHP and Unicode:
A Love at Fifth Sight

Andrei Zmievski
Yahoo! Inc.

Andrei Zmievski © 2005PHP and Unicode

Agenda

✓ Multi-i18n-what?
✓ Can’t PHP do it now?
✓ Unicode, quoi?
✓ How do we get it into PHP?
✓ When can I get my hands on it?

Andrei Zmievski © 2005PHP and Unicode

The World According to US

Andrei Zmievski © 2005PHP and Unicode

How a typical (central) Canadian sees the world

Andrei Zmievski © 2005PHP and Unicode

Multi-i18n-what?

✓ There is more than one country in the world
✓ They don't all speak English!
✓ Some of them even speak French

Andrei Zmievski © 2005PHP and Unicode

Multi-i18n-what?

✓ Don’t they all use the same alphabet?

No.
✓ Well, then each language has a specific digital

representation?

Guess again.
✓ So it's a big mess?

You can't even begin to approximately imagine.

Andrei Zmievski © 2005PHP and Unicode

Definitions
Character Set

A collection of abstract characters or
graphemes used in a certain domain

...А Б В Г Д Е Ё Ж З И...

Andrei Zmievski © 2005PHP and Unicode

Definitions
Character Encoding Form

Representation of a character set using a
number of integer codes (code values)

KOI8-R: А = 225, И= 234

CP-1252: А = 192, И = 201

Unicode: А = 410, И = 418

Andrei Zmievski © 2005PHP and Unicode

Definitions
Character Encoding Sequence

Representation of code values as bit sequences,
with attention given to things like platform-
dependent byte order issues

KOI8-R: А = E1, И= EA

CP-1252: А = C0, И = C9

UTF-8: А = D0 90, И = D0 98

UTF-16BE: А = 04 10, И = 04 18

Andrei Zmievski © 2005PHP and Unicode

Definitions
Internationalization

To design and develop an application:
✓
without built-in cultural assumptions

✓
that is efficient to localize

I18n

L10nLocalization

To tailor an application to meet the needs of a
particular region, market, or culture

Andrei Zmievski © 2005PHP and Unicode

Multi-i18n-what?

✓ Dealing with multiple encodings is a pain
✓ Different algorithms, conversion, detection,

validation, processing... understanding
✓ Dealing with multiple languages is a pain too
✓ But cannot be avoided in this day and age

Andrei Zmievski © 2005PHP and Unicode

Challenges

✓ Need to implement applications for multiple
languages and cultures

✓ Perform language and encoding appropriate
searching, sorting, word breaking, etc.

✓ Support date, time, number, currency, and more
esoteric formatting in the specific locale

✓ And much more

Andrei Zmievski © 2005PHP and Unicode

Agenda

✓ Multi-i18n-what?
✓ Can’t PHP do it now?
✓ Unicode, quoi?
✓ How do we get it into PHP?
✓ When can I get my hands on it?

Andrei Zmievski © 2005PHP and Unicode

Agenda

✓ Multi-i18n-what?
✓ Can’t PHP do it now?
✓ Unicode, quoi?
✓ How do we get it into PHP?
✓ When can I get my hands on it?

Andrei Zmievski © 2005PHP and Unicode

Can’t PHP do it now?

✓ PHP is a binary processor
✓ The string type is byte-oriented
✓ Encoding? What encoding?
✓ But isn’t it sweet that string vars can contain

images?
✓ Not if you are trying to do real work!

Andrei Zmievski © 2005PHP and Unicode

Ah, I can use iconv()

✓ Helps with encoding conversion
✓ And not much else!
✓ You’re still stuck with a binary processor
✓ And the rest of the baggage: POSIX locales,

machine-dependent locale data, inability to mix
character sets

Andrei Zmievski © 2005PHP and Unicode

Well, mbstring sounds good..

✓ Automates certain aspects of handling encoding
issues (for a subset of them)

✓ Tailored to CJK market
✓ Not really integrated into the language runtime
✓ Fixes a dozen string functions, but..
✓ You’re still stuck with a binary processor!
✓ Lacks collation, search, and other i18n features

Andrei Zmievski © 2005PHP and Unicode

Anything else?

✓ POSIX-based locale support
✓ Reliance on the system locale data
✓ Disparate i18n functions

Andrei Zmievski © 2005

Hmm, what if there were only one character
set, and a couple of sane encodings for all the
languages, and well-defined algorithms, and
stuff that actually works..

There is.

Andrei Zmievski © 2005PHP and Unicode

Agenda

✓ Multi-i18n-what?
✓ Can’t PHP do it now?
✓ Unicode, quoi?
✓ How do we get it into PHP?
✓ When can I get my hands on it?

Andrei Zmievski © 2005PHP and Unicode

Agenda

✓ Multi-i18n-what?
✓ Can’t PHP do it now?
✓ Unicode, quoi?
✓ How do we get it into PHP?
✓ When can I get my hands on it?

Andrei Zmievski © 2005PHP and Unicode

Unicode Overview

✓ Developed by the Unicode Consortium
✓ Covers all major living scripts
✓ Version 4.0 has 96,000+ characters
✓ Capacity for 1 million+ characters
✓ Unicode Character Set = ISO 10646

Andrei Zmievski © 2005PHP and Unicode

Unicode Character Set

Example Unicode Characters
Organized by scripts into blocks

Andrei Zmievski © 2005PHP and Unicode

Unicode Character Set

✓ Code Points 0 to 10FFFF, (Maximum 21 Bits)
✓ Unicode notation for code point is U+hhhh
✓ 17 Planes of 64K (FFFF) code points

✓ Basic Multilingual Plane (BMP) U+0000-U+FFFF
✓ Commonly used characters in living scripts

✓ 1st Supplementary Plane (U+10000-U+1FFFF)
✓ archaic, fictional characters

✓ 2nd Supplementary Plane (U+20000-U+2FFFF)
✓ Ideographs

Andrei Zmievski © 2005PHP and Unicode

Unicode is Generative
✓ Composition can create “new” characters
✓ Base + non-spacing (combining) character(s)

A + ˚ = Å
 U+0041 + U+030A = U+00C5

a + ˆ + . = ậ
 U+0061 + U+0302 + U+0323 = U+1EAD

a + . + ˆ = ậ
 U+0061 + U+0323 + U+0302 = U+1EAD

Andrei Zmievski © 2005PHP and Unicode

Unicode is Cool

✓ Multilingual
✓ Rich and reliable set of character properties
✓ Standard encodings: UTF-8, UTF-16, UTF-32
✓ Algorithm specifications provide interoperability
✓ But Unicode != i18n

Andrei Zmievski © 2005PHP and Unicode

Agenda

✓ Multi-i18n-what?
✓ Can’t PHP do it now?
✓ Unicode, quoi?
✓ How do we get it into PHP?
✓ When can I get my hands on it?

Andrei Zmievski © 2005PHP and Unicode

Agenda

✓ Multi-i18n-what?
✓ Can’t PHP do it now?
✓ Unicode, quoi?
✓ How do we get it into PHP?
✓ When can I get my hands on it?

Andrei Zmievski © 2005PHP and Unicode

Goals

✓ Native Unicode string type
✓ Distinct binary and native encoding string types
✓ Unicode string literals
✓ Updated language semantics
✓ Upgrade existing functions, rather than create

new ones

Andrei Zmievski © 2005PHP and Unicode

Goals

✓ Backwards compatibility
✓ Making simple things easy and complex things

possible
✓ Focus on functionality
✓ Parity with Java’s Unicode and i18n support

Andrei Zmievski © 2005PHP and Unicode

Fundamentals

✓ UTF-16 as internal encoding
✓ Operational unit is a code point
✓ Unicode characters in identifiers

Andrei Zmievski © 2005PHP and Unicode

Fundamentals

✓ Explicit, rather than implicit, i18n features
✓ Normalization form NFC is expected
✓ Unicode is a choice, not a requirement
✓ Extending language semantics in the Unicode

mode is allowed

Andrei Zmievski © 2005PHP and Unicode

ICU

✓ IBM Components for Unicode
✓ Why not our own solution?

✓ Lots of know-how is required
✓ Reinventing the wheel
✓ In the spirit of PHP: borrow when possible, invent

when needed, but solve the problem

Andrei Zmievski © 2005PHP and Unicode

Why ICU?
✓ It exists

✓ Full-featured

✓ Robust

✓ Fast

✓ Proven

✓ Portable

✓ Extensible

✓ Open Source

✓ Supported and maintained

Andrei Zmievski © 2005PHP and Unicode

ICU Features

✓
Unicode Character Properties
✓
Unicode String Class & text

processing
✓
Text transformations (normalization,

upper/lowercase, etc)
✓
Text Boundary Analysis (Character/

Word/Sentence Break Iterators)
✓
Encoding Conversions for 500+

legacy encodings
✓
Language-sensitive collation

(sorting) and searching
✓
Unicode regular expressions
✓
Thread-safe

✓
Formatting: Date/Time/Numbers/
Currency

✓
Cultural Calendars & Time Zones
✓
(230+) Locale handling
✓
Resource Bundles
✓
Transliterations (50+ script pairs)
✓
Complex Text Layout for Arabic,

Hebrew, Indic & Thai
✓
International Domain Names and

Web addresses
✓
Java model for locale-hierarchical

resource bundles. Multiple locales
can be used at a time

Andrei Zmievski © 2005PHP and Unicode

Major Milestones

✓ Retrofitting the engine to support Unicode
✓ Making existing extensions Unicode-aware
✓ Exposing ICU API

Andrei Zmievski © 2005PHP and Unicode

Let There Be Unicode!

✓ A control switch called unicode_semantics
✓ Per-request configuration setting
✓ No changes to program behavior unless enabled
✓ Does not imply no Unicode at all when disabled!

Andrei Zmievski © 2005PHP and Unicode

String Types

✓ Existing string types: only overloaded one, used
for everything

✓ New string types
✓ Unicode: textual data (UTF-16 internally)
✓ Binary: binary data and strings meant to be

processed on the byte level
✓ Native: for backwards compatibility and

representing strings in a specific encoding

Andrei Zmievski © 2005PHP and Unicode

String Literals

✓ With unicode_semantics=off, string literals are
old‑fashioned 8-bit strings

✓ 1 character = 1 byte

$str = "hello world"; // ASCII string
echo strlen($str); // result is 11

$jp = "検索オプション"; // UTF-8 string
echo strlen($str); // result is 21

Andrei Zmievski © 2005PHP and Unicode

Unicode String Literals
✓ With unicode_semantics=on, string literals are of

Unicode type
✓ 1 character may be > 1 byte

✓ To obtain length in bytes one would use a
separate function

// unicode_semantics = on
$str = "hello world"; // Unicode
echo strlen($str); // result is 11

$jp = "検索オプション"; // Unicode
echo strlen($str); // result is 7

Andrei Zmievski © 2005PHP and Unicode

Binary String Literals
✓ Binary string literals require new syntax
✓ The contents, which are the literal byte sequence

inside the delimiters, depend on the encoding of
the script

// assume script is written in UTF-8

$str = b'woof'; // 77 6F 6F 66

$str = b’q\xa0q"; // 71 A0 71

$str = b<<<EOD
 ΩΩς\xcf\x86
EOD;	

	

 	

 	

 	

 // CE A9 CF 82 CF 86

Andrei Zmievski © 2005PHP and Unicode

Escape Sequences
✓ Inside Unicode strings \uXXXX and \UXXXXXX

escape sequences may be used to specify Unicode
code points explicitly

// these are equivalent
$str = "Hebrew letter alef: א";
$str = "Hebrew letter alef: \u05D0";

// so are these
$str = 'ideograph: 𠀋';
$str = 'ideograph: \U02000B';

Andrei Zmievski © 2005PHP and Unicode

Escape Sequences
✓ Characters can also be specified by name, using

the \C{..} escape sequence

// these are equivalent
$str = "Alef: \C{HEBREW LETTER ALEF}";
$str = "Alef: \u05D0";

Andrei Zmievski © 2005PHP and Unicode

PHP

filesystemscripts

Web Web
HTTP output encodingHTTP input encoding

script encoding filename encoding

Unicode
strings

native
strings

runtime encoding

streams
stream-specific

encodings

Conversions
Dataflow

Andrei Zmievski © 2005PHP and Unicode

Runtime Encoding
✓ Specifies what encoding to attach to native strings

generated at runtime

✓ Also used when interfacing with functions that do
not yet support Unicode type

// runtime_encoding = iso-8859-1

$uni = "Café"; // Unicode
$str = (string)$str; // ISO-8859-1 string
$uni = (unicode)$uni; // back to Unicode

$str = long2ip(20747599); // $str is ISO-8859-1

Andrei Zmievski © 2005PHP and Unicode

Script/Source Encoding

✓ Currently, scripts may be written in a variety of
encodings: ISO-8859-1, Shift-JIS, UTF-8, etc.

✓ The engine needs to know the encoding of a script
in order to parse it

✓ Encoding can be specified as an INI setting or
with declare() pragma

✓ Affects how identifiers and string literals are
interpreted

Andrei Zmievski © 2005PHP and Unicode

Script Encoding
✓ Whatever the encoding of the script, the resulting

string value is of Unicode type

✓ In both cases $uni is a Unicode string containing
two codepoints: U+00F8 U+006C

// script_encoding = iso-8859-1
$uni = "øl"; // script bytes are F8 6C

// script_encoding = utf-8
$uni = "øl"; // script bytes are C3 B8 6C

Andrei Zmievski © 2005PHP and Unicode

Script Encoding
✓ Encoding can be also changed with a pragma
✓ Pragma does not propagate to included files

// script_encoding = utf-8

declare(encoding="iso-8859-1");
$uni = "øl"; // bytes are F8 6C

// the contents of file are read as UTF-8
include "myfile.php";

Andrei Zmievski © 2005PHP and Unicode

Output Encoding
✓ Specifies the encoding for the standard output

stream
✓ The script output is transcoded on the fly
✓ Does not affect binary strings

// output_encoding = utf-8
// script_encoding = iso-8859-1

$uni = "øl"; // input bytes are F8 6C
echo $uni; // output bytes are C3 B8 6C

echo b"øl"; // output bytes are F8 6C

Andrei Zmievski © 2005PHP and Unicode

HTTP Input Encoding

✓ With Unicode semantics switch enabled, we need
to convert HTTP input to Unicode

✓ GET requests have no encoding at all and POST
ones rarely come marked with the encoding

✓ If the incoming encoding is not found, PHP can
use the http_input_encoding setting to decode
the data

Andrei Zmievski © 2005PHP and Unicode

HTTP Input Encoding

✓ Frequently incoming data is in the same encoding
as the page it was submitted from

✓ Applications can ask for incoming data to be
decoded again using a different encoding

Andrei Zmievski © 2005PHP and Unicode

Filename Encoding
✓ Specifies the encoding of the file and directory

names on the filesystem
✓ Filesystem-related functions will do the

transcoding when accepting and returning
filenames

// filename_encoding = utf-8

$dh = opendir(“/tmp/подбор”);
while (false !== ($file = readdir($dh)) {
	

 echo $file, “\n”;
}

Andrei Zmievski © 2005PHP and Unicode

Fallback Encoding

✓ The encoding is used when the other encodings do
not have assigned values

✓ Easy, one-stop configuration
✓ Defaults to UTF-8 if not set
✓ If the app works only with ISO-8859-2 data:

 fallback_encoding = iso-8859-2

Andrei Zmievski © 2005PHP and Unicode

Type Conversions

Native Unicode Binary

Native ― implicit=yes
explicit=yes

implicit=no
explicit=yes

Unicode implicit=no
explicit=yes

― implicit=no
explicit=yes

Binary implicit=no
explicit=no

implicit=no
explicit=no

―

from
to

implicit = concatenation, e.g.
explicit = casting

Andrei Zmievski © 2005PHP and Unicode

Conversion Issues

✓ Not all characters can be converted between
Unicode and legacy encodings

✓ PHP will always attempt to convert as much of
the data as possible

✓ The severity of the error issued by PHP depends
on the type of the encountered problem

✓ The conversion error behavior is customizable

Andrei Zmievski © 2005PHP and Unicode

Operator Support
✓ Concatenating a native string with a Unicode one

requires up-converting it to Unicode

✓ Binary type cannot be concatenated with other
types

$str = foo(); // foo() returns a native string
$uni = "def"; // Unicode string
$res = $str . $uni; // result is Unicode

$res = b"abc" . "新着情報"; // runtime error!
$res = b"abc" . b"新着情報"; // OK
$res = b"abc" . (binary)"新着情報"; // OK, but different result

Andrei Zmievski © 2005PHP and Unicode

Operator Support
✓ String offset operator works on code points, not

bytes!

✓ No need to change existing code if you work only
with single-byte encodings, like ASCII or
ISO- 8859-1

$str = "大学"; // bytes are e5 a4 a7 e5 ad a6
echo $str{1}; // result is 学
$str{0} = 'サ'; // string is now サ学
 // bytes are e3 82 b5 e5 ad a6

Andrei Zmievski © 2005PHP and Unicode

Arrays

✓ All three string types can be used as keys
✓ The unicode_semantics switch affects how

lookup is done
✓ With unicode_semantics=on, native “abc” and

Unicode “abc” are equivalent for hash lookup
purposes

✓ With unicode_semantics=off, they are distinct

Andrei Zmievski © 2005PHP and Unicode

Inline HTML

✓ PHP scripts are very frequently interspersed with
HTML blocks

✓ These blocks should be in the same encoding as
the PHP blocks

✓ Transcode them to output encoding as necessary

Andrei Zmievski © 2005PHP and Unicode

Functions

✓ Default distribution of PHP has a few thousand
functions

✓ Most of them use parameter parsing API that
accepts typed parameters

✓ The upgrade process can be alleviated by
adjusting this API to perform automatic
conversions

Andrei Zmievski © 2005PHP and Unicode

Functions

✓ The upgrade will be a continuous process that will
require involvement from extension authors

✓ All functions should be analyzed to determine
their semantics as applied to Unicode strings

✓ A set of guidelines is essential

Andrei Zmievski © 2005PHP and Unicode

Guidelines

✓ No drastic changes to behavior of existing
functions

✓ Search/comparison functions work in binary
mode

✓ Case-insensitive functions use simple case
mapping

Andrei Zmievski © 2005PHP and Unicode

Guidelines

✓ Combining sequences do not influence matching
✓ Formatting functions do not use ICU API

Andrei Zmievski © 2005PHP and Unicode

Example
✓ By default, compare on a codepoint level using

simple case mapping

✓ If proper collation is desired, use ICU API

if (strcasecmp($a, $b) == 0) {
 ...
}

$coll = new Collator("fr_FR@collation=phonebook", ...);
$coll->setAttribute(UCOL_STRENGTH, UCOL_SECONDARY);
if ($coll->compare($a, $b) == 0) {
 ...
}

Andrei Zmievski © 2005PHP and Unicode

✓ PHP has a streams-based I/O system
✓ Generalized file, network, data compression, and

other operations
✓ Streams will be in binary mode by default

Stream IO

Andrei Zmievski © 2005PHP and Unicode

Stream IO
✓ Applications can manage Unicode conversion

explicitly

✓ Or apply a conversion filter to the stream

$data = file_get_contents('mydata.txt');
$unidata = unicode_decode($data, 'EUC-JP');

$fp = fopen($file, 'r');
stream_filter_append($fp, 'unicode.from.euc-jp');
// reads EUC-JP data and converts to Unicode
$data = fread($fp, 1024);

Andrei Zmievski © 2005PHP and Unicode

Stream IO
✓ Bad Unicode write! Bad!

✓ Good Unicode writes! Good! ☺

$fp = fopen('somefile.txt', 'w');
fwrite($fp, "\u0123foo bar baz\u0456");

$fp = fopen('somefile.txt', 'w');
stream_filter_append($fp, 'unicode.to.utf8');
fwrite($fp, "\u0123foo bar baz\u0456");

$fp = fopen('somefile.txt', 'wt');
fwrite($fp, "\u0123foo bar baz\u0456");

Andrei Zmievski © 2005PHP and Unicode

Stream IO
✓ Overriding default output encoding for streams

$ctx = stream_context_get_default();
stream_context_set_params(array('output_encoding'=>'latin1'));
$fp = fopen('somefile.txt', 'wt');
fwrite($fp, "\u0123foo bar baz\u0456");

Andrei Zmievski © 2005PHP and Unicode

Unicode Identifiers
✓ PHP will allow Unicode characters in identifiers
✓ Can have ideographic characters in addition to

accented ones

class コンポーネント {
 function コミット { ... }
}

$プロバイダ = array();
$プロバイダ[‘רַעְיולוּחַ שָׁנָה’] = new コンポーネント();

Andrei Zmievski © 2005PHP and Unicode

Agenda

✓ Multi-i18n-what?
✓ Can’t PHP do it now?
✓ Unicode, quoi?
✓ How do we get it into PHP?
✓ When can I get my hands on it?

Andrei Zmievski © 2005PHP and Unicode

Agenda

✓ Multi-i18n-what?
✓ Can’t PHP do it now?
✓ Unicode, quoi?
✓ How do we get it into PHP?
✓ When can I get my hands on it?

Andrei Zmievski © 2005PHP and Unicode

When can I have it?

✓ In a while
✓ In a longish while
✓ 90% of described functionality is done
✓ Merge into public tree imminent

Andrei Zmievski © 2005PHP and Unicode

When can I have it?

✓ Document new API and migration guidelines
✓ Upgrade core extensions to support Unicode
✓ Expose ICU services
✓ Optimize performance
✓ Educate, educate, educate

Andrei Zmievski © 2005

Thank You!

Download the slides at:
http://www.gravitonic.com/talks

Andrei Zmievski © 2005PHP and Unicode

Functions

✓ We can ease the transition for extension authors
✓ If a Unicode string is passed to a function

expecting a legacy string, the engine will attempt
to convert it to the runtime encoding

✓ The inverse happens for functions that are passed
a legacy string when they require a Unicode one

Andrei Zmievski © 2005PHP and Unicode

Functions

✓ Many Unicode operations may require additional
context

✓ Upgraded functions will use the most common
mode of operation, and leave the edge cases to
ICU API

✓ Consider strcasecmp()

