PHP and Unicode:
A Love at Fitth Sight

Andre1 Zmievski
Yahoo! Inc.

Andrei Zmievski © 2005

Agenda

« Mult1-118n-what?

The World According to US

COLD Santa Claus

lives here

CANADA

Qur friendly but
backwards neighbours

www jigsawlounge.co.ukikungfuf

PHP and Unicode Andrei Zmievski © 2005

How a typical (central) Canadian sees the world

PH

gvery good
Zanadian should
give up. their oil

(& Eheir
gQunS)

aoafy Land

Thank you Indiat

If wou get dumnped by
wour bosvFriend, wig
ouk, come here ko
find wourself, and
create wour awn
million-s&lling albwum

ouker reaches of the

solar syskem

@

Source of

all ewvil

Femnants of the
Eig Bang

[wenk hére on
riy student loan

MNewfie Land

'

They're so
cultured, thesy
ko the Finer
things in life and
don't even care
abouk shaving
their pits

TORONTO

Starbucks on Yonge
Street »

except here, this is where
our Prime Minister spends

balf his
tirme

!

g cool, & the only
our dallar is
get than!

I bet the
average
Smerican
doesn't know
this blob exisks!

it's =0 peaceful we've got peace-keepers here

You can see this star
Fram the CM To

Multi-118n-what?

r

 There 1s more than one country in the world

r

+ They don't all speak English!

- Some of them even speak French

Multi-118n-what?

- Don’t they all use the same alphabet?
No.

- Well, then each language has a specific digital
representation?

Guess again.
- Soit's a big mess?

You can't even begin to approximately 1magine.

Definitions

Character Set

A collection of abstract characters or
graphemes used 1n a certain domain

CABBTEAEEXK3 U

Definitions

Character |

Encoding Form

Representation of a character set using a

number of integer codes (code values)

KOI8-R: A =225, =234
CP-1252: A =192, 1 = 201
Unicode: A =410, N1 =418

Definitions

Character Encoding Sequence

Representation of code values as bit sequences,
with attention given to things like platform-
dependent byte order 1ssues

KOI8-R: A = El, = EA
CP-1252: A=C0, N = C9
UTF-8: A=D090, 1 = D0 98
UTF-16BE: A=0410, N = 04 18

Definitions

[118n

Internationalization

To design and develop an application:
« without built-in cultural assumptions

. that 1s eftficient to localize

L10n

To tailor an application to meet the needs of a

Localization

particular region, market, or culture

<

<

<«

Multi-118n-what?

Dealing with multiple encodings 1s a pain

Ditterent algorithms, conversion, detection,
validation, processing... understanding

Dealing with multiple languages 1s a pain too

But cannot be avoided 1n this day and age

Challenges

+ Need to implement applications for multiple
languages and cultures

« Perform language and encoding appropriate
searching, sorting, word breaking, etc.

7 Support date, time, number, currency, and more
esoteric formatting in the specific locale

< And much more

Agenda

« Mult1-118n-what?

Agenda

« Can’t PHP do it now?

<

<

<«

<«

Can’t PHP do it now?

PHP 1s a binary processor

The string type 1s byte-oriented

Encoding? What encoding?

But isn’t it sweet that string vars can contain
images?

Not if you are trying to do real work!

<«

<

<

<«

Ah, | can use iconv()

Helps with encoding conversion
And not much else!

You're still stuck with a binary processor

And the rest of the baggage: POSIX locales,

machine-dependent locale data, inability to mix
character sets

Well, mbstring sounds good..

<

Automates certain aspects of handling encoding
1ssues (for a subset of them)

Tailored to CJK market

« Not really integrated into the language runtime

<

+ Fixes a dozen string functions, but..

- You're still stuck with a binary processor!

<«

Lacks collation, search, and other 118n features

Anything else?

POSIX-based locale support

Reliance on the system locale data

Disparate 118n functions

Hmm, what if there were only one character
set, and a couple of sane encodings for all the
languages, and well-defined algorithms, and
stuff that actually works..

There is.

Agenda

« Can’t PHP do it now?

Agenda

+ Unicode, quoi?

<

Unicode Overview

Developed by the Unicode Consortium

« Covers all major living scripts

<«

<

Version 4.0 has 96,000+ characters
Capacity for 1 million+ characters

Unicode Character Set = ISO 10646

Unicode Character Set

The primary scripts currently supported by Unicode 4.0 are;

o Arabic » GUMUkh o Old Italic (Etruscan)
» Ammenian ¢ Han + Osmanya Organized by scripts into blocks
« Bengal + Hangul + Oriya :
+ Bopomofo + Hanundo » Runic Example Unicode Characters
« Buhid + Hebrew o Shavian
« Canadian Syllabics « Hiragana o Sinhal3 ASCII ABE[}EFGH%%I}SLMNQP
+ Cherokee o Kamada Syec Latin-1 AAARAAACEEEEIIIT
« Cyprict » Katakana o Tagalog . v L oA s w v
+ Cyilic Khrrier + Tagbamwa Latin-2 aAaAaClCECcCEDAD
+ Deser - Lao - Talle Greek U{ABFAEZHOIKAMNZO
» Devanagar » Latin o Tamil) .
 Etiopic o Limbu . Telugy Cyrillic pcTydhxuuwumbbiba0s
+ Georgian »LinearS - Thaana Thai Anesgan dxaniady
+ Gothic » Malayalam o Thal e
o Greek « Mongolian —» Tibetan CJK Ab il & g A = Il -F_E
+ Gljarati o Wyanmar o Ugaritic

et ; : Korean — ZfZtafZ22Ezt

+ Ogham o Vi

<

<«

<«

<«

Unicode Character Set

Code Points 0 to 10FFFF, (Maximum 21 Bits)

+ Unicode notation for code point is U+hhhh
+ 17 Planes of 64K (FFFF) code points

Basic Multilingual Plane (BMP) U+0000-U+FFFF

+ Commonly used characters in living scripts

st Supplementary Plane (U+10000-U+1FFFF)

< archaic, fictional characters

2nd Supplementary Plane (U+20000-U+2FFFF)
« Ideographs

Unicode is Generative

+ Composition can create ‘new’ characters
- Base + non-spacing (combining) character(s)
Acvialn S
U+0041 + U+030A = U+00C5

a it o=y
U+0061 + U+0302 + U+0323 = U+1EAD

a+ =g
U+0061 + U+0323 + U+0302 = U+1EAD

Andrei Zmievski © 2005

<

<

<«

<

<

Unicode is Cool

Multilingual
Rich and reliable set of character properties
Standard encodings: UTF-8, UTF-16, UTF-32

Algorithm specifications provide interoperability
But Unicode !=118n

Agenda

+ Unicode, quoi?

Agenda

+ How do we get it into PHP?

<«

<

<«

Goals

Native Unicode string type

Distinct binary and native encoding string types
Unicode string literals

Updated language semantics

Upgrade existing functions, rather than create
new ones

<

Goals

Backwards compatibility

Making simple things easy and complex things
possible

Focus on functionality

Parity with Java’s Unicode and 118n support

Fundamentals

« UTF-16 as internal encoding
+ Operational unit 1s a code point

« Unicode characters 1n 1dentifiers

<

Fundamentals

Explicit, rather than imphicit, 118n features

Normalization form NFC 1s expected

Unicode 1s a choice, not a requirement

Extenc

ing language semantics 1n the Unicode

mode 1s allowed

ICU

« IBM Components for Unicode

+ Why not our own solution?
 Lots of know-how 1s required

- Reinventing the wheel

¢ In the spirit of PHP: borrow when possible, invent
when needed, but solve the problem

Why ICU?

It exists

Full-featured
Robust

Fast

Proven
Portable
Extensible
Open Source

Supported and maintained

|CU Features

Unicode Character Properties
Unicode String Class & text

processing

Text transformations (normalization,
upper/lowercase, etc)

Text Boundary Analysis (Character/
Word/Sentence Break Iterators)

Encoding Conversions for 500+
legacy encodings

Langua e-sensitive qoﬂation
(sorting) and searching

Unicode regular expressions

Thread-safe

v Formatting: Date/Time/Numbers/
Currency

v Cultural Calendars & Time Zones
v (230+) Locale handling

v Resource Bundles

v Transliterations (560+ script pairs)

v Complex Text Layout for Arabic,
Hebrew, Indic & Thai

v International Domain Names and

Web addresses

v Java model for locale-hierarchical
resource bundles. Multiple locales
can be used at a time

Major Milestones

- Retrofitting the engine to support Unicode

‘ Making existing extensions Unicode-aware

- Exposing ICU API

A

Let There Be Unicode!

A control switch called unicode semantics
Per-request configuration setting

No changes to program behavior unless enabled

Does not imply no Unicode at all when disabled!

String Types

- Existing string types: only overloaded one, used
for everything

- New string types
- Unicode: textual data (UTF-16 internally)

 Binary: binary data and strings meant to be
processed on the byte level

« Native: for backwards compatibility and
representing strings 1n a specific encoding

String Literals

+ With unicode_semantics=off, string literals are
old-fashioned 8-bit strings

1 character = 1 byte

$stri == hel lolsworildtls i as Canssenine]
echo strlen(S$str); // result is 11

SHp: = HERSRI sy e RIS BB R R
echoistrlien eSSkt /- Fresul s sea]

Unicode String Literals

+ With unicode_semantics=on, string literals are of

Unicode type
1 character may be > 1 byte

// unicode semantics = on
Sstr = "hello worild i savEiiiintcoue
echo strlen(S$str); e e (o h b H Ly et b

Sip = "MRERA T T IR Indicode

echo strlen(S$str); // result is 7

+ To obtain length 1in bytes one would use a

separate function

Binary String Literals

 Binary string literals require new syntax

« The contents, which are the literal byte sequence
inside the delimiters, depend on the encoding of
the script

// assume script is written in UTF-8
$str = b'woof': (/T 6F 6F: 66
Sstr = b ia\xadarisl s/ st

$str = b<<<EOD

Qc\xcf\x86
EOD; [CRE A9 NCR B 2ARE NS

Escape Sequences

« Inside Unicode strings \ uXxXXX and \ UXXXXXX
escape sequences may be used to specity Unicode
code points explicitly

// these are equivalent

$str "Hebrew letter alef: N";
$str = "Hebrew letter alef: \u05D0";

// so are these
Sstr 'ideograph: X ';

Sstr = 'ideograph: \U02000B';

Escape Sequences

« Characters can also be specified by name, using
the \C{. .} escape sequence

// these are equivalent
Sstr "Alef: \C{HEBREW LETTER ALEF}";
Sstr "Alef: \uO5D0";

Conversions
Dataﬂ()w stream-specific

encodings
PHP
Unicode

strings

Web | > runtimeHencoding | > Web
HTTP input encoding na.tlve HTTP output encoding

strings

script encoding flename encoding

SCripts filesystem

Runtime Encoding

« Specifies what encoding to attach to native strings
generated at runtime

// runtime encoding = iso-8859-1

SuninEeSEa el // Unicode
$stri = (String)SsErii i/ TSO=g85 0=l s
Suni = (unicode)$uni; // back to Unicode

« Also used when interfacing with functions that do

not yet support Unicode type

Sstr = . long2ip(20747599) ¢/ Se e s SESH=88H 0=

Script/Source Encoding

Currently, scripts may be written 1n a variety of

encodings: [ISO-8859-1, Shitt-JIS, UTF-8, etc.

The engine needs to know the encoding of a script
in order to parse it

Encoding can be specified as an INI setting or
with declare() pragma

Affects how identifiers and string literals are
interpreted

Script Encoding

« Whatever the encoding of the script, the resulting
string value 1s of Unicode type

// script encoding = iso-8859-1
Suni = "@l"; // script bytes are F8 6C

// script encoding = utf-8
Suni = "@l": // script bytes are €3 B8 6C

 In both cases $uni i1s a Unicode string containing
two codepoints: U+00F8 U+006C

Script Encoding

+ Encoding can be also changed with a pragma

+ Pragma does not propagate to included files

// script encoding = utf-8

declare(encoding="iso-8859-1");
Suni = "@l"; // bytes are F8 6C

/ /- .the, contents ‘of fillearerrcacras N PETG
inc ude ‘myfasiesphpse

Output Encoding

 Specihies the encoding for the standard output
stream

+ The script output 1s transcoded on the fly
« Does not affect binary strings

// output encoding = utf-8
// script encoding = iso-8859-1

suni = "gl": [/l inputzbytes s are s SHneiGe
echo Suni; // output bytes are C3 B8 6C

echo b'gl"; i/ /[output bytes aretHat6C

HTTP Input Encoding

« With Unicode semantics switch enabled, we need
to convert HTTP input to Unicode

« GET requests have no encoding at all and POST

ones rarely come marked with the encoding

¢ If the incoming encoding 1s not found, PHP can
use the http_input_encoding setting to decode
the data

HTTP Input Encoding

« Frequently incoming data 1s in the same encoding
as the page it was submitted from

« Applications can ask for incoming data to be
decoded again using a different encoding

Filename Encoding

« Specihies the encoding of the file and directory
names on the filesystem

 Filesystem-related functions will do the
transcoding when accepting and returning

:ﬁleruxnles

// filename encoding = utf-8

$dh = opendir(“/tmp/nonbop”);
while (false !== ($file = readdir($dh)) {
echor=SElrl et xmi

}

<

<

Fallback Encoding

The encoding 1s used when the other encodings do
not have assigned values

Easy, one-stop configuration

Deftaults to UTF-8 if not set
It the app works only with ISO-8859-2 data:

fallback encoding = 15s0-8859-2

Type Conversions

to Native Unicode Binary
from

Native et |mpl_|c_|t=yes |mp_I|c.|t=no
explicit=yes explicit=yes
Unicode |mp_I|c_|t=no fr |mp_I|c.|t=no
explicit=yes explicit=yes

Binary |mpI.|c.|t=no |mpI.|c.|t=no iy

explicit=no explicit=no

implicit = concatenation, e.g.
explicit = casting

Conversion lssues

Not all characters can be converted between
Unicode and legacy encodings

PHP will always attempt to convert as much of
the data as possible

The severity of the error 1ssued by PHP depends
on the type of the encountered problem

The conversion error behavior 1s customizable

Operator Support

+ Concatenating a native string with a Unicode one
requires up-converting it to Unicode

Sstr = foo(); // foo() returns a native string
Suni = "def"; // Unicode string
Sres = $str . $Suni; // result is Unicode

- Binary type cannot be concatenated with other

types

$res = b"abc" . "FAEEHR"; // runtime error!
$res = b"abc" . b"FEBEIR"; /T OK
$res = b"abc" . (binary)"#&EEHR"; // OK, but different result

Operator Support

« String offset operator works on code points, not

bytes!

Sz = g2 // bytes are e5 a4 a7 e5 ad a6
echo S$str{l}; e e Sl e
ST {0} =il TR e i G e ST (= e e

// bytes are e3 82 b5 e5 ad a6

+ No need to change existing code if you work only

with single-byte encodings, like ASCII or
[SO-8859-1

Arrays

« All three string types can be used as keys

v 0

he unicode semantics switch attects how

lookup 1s done

4

With unicode semantics=on, native “abc” and
Unicode “abc” are equivalent for hash lookup

purposes

With unicode semantics=off, they are distinct

Inline HTML

« PHP scripts are very frequently interspersed with
HTML blocks

+ These blocks should be in the same encoding as
the PHP blocks

« Transcode them to output encoding as necessary

Functions

< Deftault distribution of PHP has a few thousand

functions

- Most of them use parameter parsing API that
accepts typed parameters

+ The upgrade process can be alleviated by
adjusting this API to perform automatic
CONVErsions

Functions

* The upgrade will be a continuous process that will
require involvement from extension authors

+ All functions should be analyzed to determine
their semantics as applied to Unicode strings

< A set of guidelines 1s essential

Guidelines

+ No drastic changes to behavior of existing
functions

 Search/comparison functions work 1n binary
mode

+ Case-Insensitive functions use simple case

mapping

Guidelines

- Combining sequences do not influence matching

- Formatting functions do not use ICU API

Example

« By default, compare on a codepoint level using
simple case mapping

if (strcasecmp($a, Sb) == 0) {

}

« If proper collation 1s desired, use ICU API

Scoll = new Collator("fr FR@collation=phonebook", ...);
$coll->setAttribute (UCOL STRENGTH, UCOL SECONDARY) ;

if (Scoll->compare(Sa, Sb) == 0) {

}

Stream O

- PHP has a streams-based I/O system

« Generalized file, network, data compression, and
other operations

 Streams will be 1n binary mode by default

Stream O

« Applications can manage Unicode conversion
explicitly

Sdata = file get contents('mydata.txt');
Sunidata = unicode decode($data, 'EUC-JP');

« Or apply a conversion filter to the stream

SEps =" fopeniEsiEailer it

stream filter append($fp, 'unicode.from.euc-jp');
// reads EUC-JP data and converts to Unicode
Sdata = fread($fp, 1024);

Stream 1O

+ Bad Unicode write! Bad!

Sfp = fopen('somefile.txt', 'w');
fwrite($fp, "\u01l23foo bar baz\u0456");

« Good Unicode writes! Good! ©

Sfp = fopen('somefile.txt', 'w');
stream filter append($fp, 'unicode.to.utf8');
fwrite($Sfp, "\u0l123foo bar baz\u0456");

$fp = fopen('somefile.txt', 'wt');
fwrite($fp, "\u0123foo bar baz\u0456");

Stream 1O

« Overriding default output encoding for streams

Sctx = stream context get default();

stream context set params(array('output encoding'=>'latinl'));
Sfp = fopen('somefile.txt', 'wt');

fwrite(S$fp, "\u0l23foo bar baz\u0456");

Unicode Identifiers

« PHP will allow Unicode characters in identifiers

+ Can have 1deographic characters in addition to
accented ones

cllass’ Sl =R Ak ot
functilen El= i oatia i
}

s70O/XAM(%Y = array();
sTONAY MY MOw1’] = new AVIR—KV K ();

Agenda

+ How do we get it into PHP?

Agenda

© When can | get my hands on 1t?

When can | have it?

+ In a while
 In a longish while

+ 90% of described functionality 1s done

+ Merge into public tree imminent

<

When can | have it?

Document new API and migration guidelines

Upgrade core extensions to support Unicode

Expose ICU services

Optimize performance

Educate, educate, educate

httj

Thank You!

LIFE ENGINE

Download the shdes at:
D://www.gravitonic.com/talks

Andrei Zmievski © 2005

Functions

< We can ease the transition for extension authors

« It a Unicode string 1s passed to a function
expecting a legacy string, the engine will attempt
to convert it to the runtime encoding

« The 1nverse happens for functions that are passed
a legacy string when they require a Unicode one

Functions

+ Many Unicode operations may require additional
context

« Upgraded functions will use the most common
mode of operation, and leave the edge cases to

ICU API

« Consider strcasecmp ()

