all the little pieces

Andrei ZmievsKi # Digg

OSCON 2009 + San Jose
twitter: @4

Who is this guy?

Open Source Fellow @ Digg

PHP Core Developer since 1999
Architect of the Unicode/i18n support
Release Manager for PHP 6

Beer lover (and brewer)

Why distributed?

e Because Moore’s Law will not save you

e Despite what DHH says

Share nothing

e Your Mom was wrong

e No shared data on application servers

e Distribute it to shared systems

distribute...

e memory (memcached)

e storage (mogilefs)

e work (gearman)

Building blocks

e GLAMMP - have you heard of it?

e Gearman + LAMP + Memcached

e Throw in Mogile too

Thursday, July 23, 2009

background

e created by Danga Interactive

e high-performance, distributed
memory object caching system

e sustains Digg, Facebook, LivedJournal,
Yahoo!, and many others

e if you aren’t using it, you are crazy

background

e Very fast over the network and very
easy to set up

e Designed to be transient

e You still need a database

Thursday, July 23, 2009

(o))
o
o
a(
™
o\
>
>
3
>
©
°
>
<
|

4104 bytes

1368 bytes 1368 bytes

456 bytes 456 bytes 456 bytes

152 152 152 152 152
bytes bytes bytes Dbytes Dbytes
4

Thursday, July 23, 2009

memory architecture

e memory allocated on startup,
released on shutdown

e variable sized slabs (80+ by default)

e each object is stored in the slab most
fitting its size

e fragmentation can be problemastic

memory architecture

e items are deleted:

e 0N set

e on get, if it’s expired

e if slab is full, then use LRU

applications

e object cache

e output cache

e action flood control / rate limiting

e simple queue

e and much more

PHP clients

e g few private ones (Facebook, Yahoo!,
etc)

e pecl/memcache

e pecl/memcached

pecl/memecached

e based on libmemecached

e released in January €009

e surface API similarity to pecl/
memeache

e parity with other languages

API

o get, e cas

e set e * by key

e add e getMulti

e replace e setMulti

e delete e getDelayed / fetch*
e append e callbacks

e prepend

Thursday, July 23, 2009

consistent hashing

compare-and-swap (cas)

e “check and set”

e No update if object changed

e relies on CAS token

$m = new Memcached();
$m->addServer('localhost', 11211);

do {
$ips = $m->get('ip_block', null, $cas);

if ($m->getResultCode() == Memcached: :RES_NOTFOUND) {

$ips = array($_SERVER['REMOTE_ADDR']);
$m->add('ip_block', $ips);

} else {
$ips[] = $_SERVER['REMOTE_ADDR'];

$m->cas($cas, 'ip_block’, $ips);
}

} while ($m->getResultCode() != Memcached: :RES_SUCCESS);

Thursday, July 23, 2009

delayed “lazy” fetching

e issue request with getDelayed ()

e do other work

o fetch results with fetch() or
fetchAll ()

binary protocol

e performance
e every request is parsed
e can happen thousands times a
second

e extensibility

e support more data in the protocol

callbacks

e read-through cache callback

e if key is not found, invoke callback,
save value to memecache and return it

callbacks

e result callback

e invoked by getDelayed () for every
found item

e should not call fetch () in this case

buffered writes

¢ queue up write requests

e send when a threshold is exceeded or
a ‘Set’ command is issued

key prefixing

e optional prefix prepended to all the
keys automatically

e allows for namespacing, versioning,
etc.

key locality

e allows mapping a set of keys to a
specific server

multiple serializers

e PHP

e iSbinary

o JSON (soon)

future

e UDP support

e replication

e server management (ejection, status
callback)

tips & tricks

e 32-bit systems with > 4GB memory:

memecached -m4096 -pl12ll

memecached -m4096 -pl1212
memecached -m4096 -pll1213

tips & tricks

e write-through or write-back cache

e Warm up the cache on code push

e Version the keys (if necessary)

tips & tricks

e Don’t think row-level DB-style
caching; think complex objects

e Don’t run memcached on your DB

server — your DBAS might send you
threatening notes

e Use multi-get — run things in parallel

1 $ns key = Smemcache->get("foo namespace key");
2 // if not set, initialize it
3 1f ($ns key === false)
4 smemcache->set ("foo namespace key",

rand(1l, 10000));
6 // cleverly use the ns key
7 Smy key = "foo ".$ns key." 12345"
8 Smy val = Smemcache->get(Smy key)
9 // to clear the namespace:
10 $memcache->increment("foo namespace key");

we

we

Thursday, July 23, 2009 |

storing lists of data

e Store items under indexed keys:
comment. 12, comment.23, etc

e Then store the list of item IDs in
another key: comments

e To retrieve, fetch comments and then
multi-get the comment IDs

preventing stampeding

e embedded probabilistic timeout

e gearman unique task trick

optimization

e watch stats (eviction rate, fill, etc)

e getStats()

e telnet + “stats” commands

e peep (heap inspector)

slabs

e Tune slab sizes to your needs:

e —f chunk size growth factor (default
1.25)

e —n minimum space allocated for key
+value+flags (default 48)

slab
slab
slab
slab
slab
slab

Thursday, July 23, 2009

class
class
class
class

class
class

= W N -

39:

slabs

chunk
chunk
chunk
chunk

chunk
chunk

size
size
size
size

104
136
176
224

size 394840
size 493552

Default: 38 slabs

perslab
perslab
perslab
perslab

perslab
perslab

10082
7710
5957
4681

slab
slab
slab
slab
slab
slab

Most objects: ~1-fKB, some larger

class
class
class
class

class 198:
class 199:

memcached

= W N R

slabs

chunk
chunk
chunk
chunk

chunk
chunk

size 1048 perslab
size 1064 perslab
size 1080 perslab
size 1096 perslab
size 9224 perslab
size 9320 perslab
SR 00 -f 1.01

1000
985
970
956

113
112

Thursday, July 23, 2009

memecached @ digg

OPS

e memecached on each app server (2GB)

e the process is niced to a lower level

e separate pool for sessions

e 2 servers keep track of cluster health

key prefixes

e global key prefix for apc, memecached,
etc

e each pool has additional, versioned
prefix: .sess.2

e the key version is incremented on
each release

e global prefix can invalidate all caches

cache chain

e multi-level caching: globals, APC,
memecached, etc.

e all cache access is through
Cache_Chain class

e various configurations:
e APC = memcached

e $GLOBALS = APC

other

e large objects (> 1MB)

e split on the client side

e save the partial keys in a ma.ster one

stats

| memcached - Count Stats | memcached: 11211 £

A =

2.0 k =
1.5 k =

&

" 1.0k m
.

m

A

0.0 : : 4
Tue 06:00 Tue 12:00 Tue 18:00 Wed 00: 00
From: 05/26/2009 01:17 (1243325820) To: 05/27/2009 01:17 (1243412220)
m Cmd_Get Current: 1.26 k Average: 1.52 k Maximum: 2.11 k 95th: 1.85 k
Cmd_Set Current: 374.51 Average: 427.91 Maximum: 625.15 95th: S504.58
© Get_Misses Current: 353. 27 Average: 442 02 Maximum: 599. 45 95th: 544.96
» Get_Hits Current: 903. 05 Average: 1.08 k Maximum: 1.54 k 95th: 1.35 k
® Curr Connections Current: 553.50 'iﬂxfﬁﬁgﬁichxl?7'28 Maximum: 1.05 k 95th: 953. 67

Thursday, July 23, 2009

IMOX1 - memeached proxy

e homogenization

e multi-get escalation

e protocol pipelining

e statistics, etc

alternatives

e in-memory: Tokyo Tyrant, Scalaris

e persistent: Hypertable, Cassandra,
MemcacheDB

e document-oriented: CouchDB

Thursday, July 23, 2009

background

e created by Danga Interactive

e application-level distributed
filesystem

e used at Digg, LivedJournal, etc

e g form of “cloud caching”

e scales very well

background

e gutomatic file replication with custom
policies

e NO single point of failure
e flat namespace

e local filesystem agnostic

e not meant for speed

architecture

node

tracker \
‘ node

lI

tracker
DB node
——> node

tracker

node

Thursday, July 23, 2009

applications

e Images

e document storage

e backing store for certain caches

PHP client

e File Mogile in PEAR

e MediaWiki one (not maintained)

$hosts = array('172.10.1.1', '172.10.1.2");
new File_Mogile($hosts, 'profiles');

$m =
$m->storeFile('userl234', 'image',
'/tmp/1magel’l234.jpg’);

paths = $m->getPaths('useril234');

Thursday, July 23, 2009 '

mogile @ digg

mogile @ digg

e Wrapper around File Mogile to cache
entries in memecache

e fairly standard set-up

e trackers run on storage nodes

mogile @ digg

e not huge (about .5 TB of data)

e files are replicated 3x

e the user profile images are cached on
Netscaler (1.5 GB cache)

e mogile cluster load is light

gearman

fo)
o
o
N
o
I3\
>
S
3
>
©
o]
)
| -
S
<
T

background

e created by Danga Interactive

e anagram of “manager”

e g system for distributing work

e g form of RPC mechanism

background

e parallel, asynchronous, scales well

e fire and forget, decentralized

e gvoid tying up Apache processes

background

e dispatch function calls to machines
that are better suited to do work

e do work in parallel

e Joad balance lots of function calls

e invoke functions in other languasges

worker

worker

worker

uly 23, 2009

applications

e thumbnail generation

e asynchronous logging

¢ cache warm-up

e DB jobs, data migration

e sending email

SISIRVASIES

e Gearman-Server (Perl)

e gearmand (C)

clients

e Net Gearman

e simplified, pretty stable

* pecl/gearman

e more powerful, complex, somewhat
unstable (under development)

Cconcepts

e Job
e Worker

e Task

e Client

Net Gearman

e Net Gearman Job

e Net Gearman Worker

e Net Gearman Task

e Net Gearman Set

e Net Gearman Client

class Net_Gearman_Job_Echo extends Net_Gearman_Job_Common
public function run($arg)

var_export($arg);
echo "\n";

Echo.php

Thursday, July 23, 2009

class Net_Gearman_Job_Reverse extends Net_Gearman_Job_Common

{

public function run($arg)

{
$result = array(Q);
$n = count($arg);
$1 = 0;
while ($value = array_pop($arg)) {
$result[] = $value;
$1++;
$this->status($i, $n);
¥
return $result;
ks
1 Reverse.php

Thursday, July 23, 2009 | -

define('"NET_GEARMAN_JOB_PATH', "'./");

require 'Net/Gearman/Worker.php';

$worker = new Net_Gearman_Worker(array('localhost:4730'));
$worker->addAbility('Reverse');
$worker->addAbility('Echo');
$worker->beginWork();

} catch (Net_Gearman_Exception $e) {
echo $e->getMessage() . "\n";
exit;

Thursday, July 23, 2009 I

continued..

s
I
)
(V)]
()
C
A
U/
b
C
“+“ O
Q.
N\ X
+
— _
o~ S5 N\
- v O ©
Q. L > e
- | N
Q. A = ~
. -
t o o o $
- v 4
Q — —~ -~
o ©T S ()]
— C —!
) ©C Q ©
N O O -
- A @)
®) -~ <
= ~ Q A
(< QO P
®) O v -~
() ‘™ — e
O A Q @ o~
N = "M =
s v O & -
(<)) P U U/ e
= D Vp) ©
- — Q > A
Q O -+ N
Q & 'mMm O C
O O &HA o~ +J &
- U = (V)] =
@) -

. ,. _ Cc O -~ - @)

_ . o v O C = O (= °
C - QO o= @) S
o= +2 DV M +J ()] N
> @ () @) Q
o - S - =
() > (N > &
N U 4+ A U- ~ @

$client = new Net_Gearman_Client(array('lager:4730'));

$task = new Net_Gearman_Task('Reverse', range(1,5));
$task->attachCallback("complete" ,Net_Gearman_Task: : TASK_COMPLETE);
$task->attachCallback("status" ,Net_Gearman_Task: : TASK_STATUS);

continued..

Thursday, July 23, 2009

set = new Net_Gearman_Set();
set->addTask($task);

client->runSet($set);

client->Echo('Mmm... beer');

e
Thursd uly 23, 2009

pecl/gearman

e More complex API

e Jobs aren’t separated into files

$gmworker= new gearman_worker();
$gmworker->add_server();
$gmworker->add_function("reverse", "reverse_fn");

while (1)
{
$ret= $gmworker->work();
1f ($ret !'= GEARMAN_SUCCESS)
break;

¥

function reverse_fn($job)
{
$workload= $job->workload();
echo "Received job: " . $job->handle() . "\n";
echo "Workload: $workload\n";
$result= strrev($workload);
echo "Result: $result\n";
return $result;

Thursday, July 23, 2009

$gmclient= new gearman_client();
$gmclient->add_server('lager');

echo "Sending job\n";

list($ret, $result) = $gmclient->do("reverse", "Hello!");

1f ($ret == GEARMAN_SUCCESS)
echo "Success: $result\n";

Thursday, July 23, 2009

gearman @ digsg

gearman @ digg

e 400,000 jobs a day

e Jobs: crawling, DB job, FB sync,
memecache manipulation, Twitter
post, IDDB migration, etc.

e Hach application server has its own
Gearman daemon + workers

tips and tricks

e yOU can daemonize the workers easily
with daemon or supervisord

e run workers in different groups, don’t
block on job A waiting on job B

e Make workers exit after N jobs to free
up memory (supervisord will restart
them)

Thursday, July 23, 2009

background

e NOT developed by Danga (Facebook)

e cross-language services

e RPC-based

background

e interface description language

e pindings: C++, C#, Cocoa, Erlang,
Haskell, Java, OCaml, Perl, PHP,
Python, Ruby, Smalltalk

e data types: base, structs, constants,
services, exceptions

o
o
o
N
o
I3\
>
=}
3
>
©
o]
»
| -
>
<
T

Thursday, July 23, 2009

Thank You

http://gravitonic.com/talks

http://gravitonic.com/talks
http://gravitonic.com/talks

