
Andrei Zmievski © 2005

PHP and Unicode:
A Love at Fifth Sight

Andrei Zmievski
Yahoo! Inc.

Andrei Zmievski © 2005

Agenda

✓ Quick look at today’s challenges
✓ What is Unicode and why is it?
✓ Unicode and PHP

Andrei Zmievski © 2005

European Union

25 states and growing

Andrei Zmievski © 2005

Official Languages of EU
Czech

Danish

Dutch

English

Estonian

Finnish

French

German

Greek (Demotic)

Hungarian

Italian

Latvian

Lithuanian

Maltese

Polish

Portuguese

Slovak

Slovene

Spanish

Swedish

Andrei Zmievski © 2005

Character Encodings of EU
•� ISO 8859-7 Greek
•� ISO 8859-3 Maltese
•� ISO 8859-2

–� Czech
–� Latvian
–� Lithuanian
–� Polish
–� Slovak
–� Slovene
–� Estonian
–� Hungarian

•� ISO 8859-1/ISO 8859-15
–� Danish
–� Dutch
–� English
–� Finnish
–� French
–� German
–� Italian
–� Portuguese
–� Spanish
–� Swedish

Andrei Zmievski © 2005

Today’s Business Challenges

✓ Supporting languages needed for business
✓ Used in the EU, officially or regionally
✓ Used by export markets: Japan, China, etc.

✓ Adding characters as needed, easily
✓ e.g. Euro
✓ without rewriting each application

Andrei Zmievski © 2005

Today’s Technical Challenges

✓ Differences in character encodings
✓ Require different algorithms
✓ Imply different code in each market
✓ Lack of integration and interoperability
✓ High error rate and poor quality

Andrei Zmievski © 2005

✓ One distributable package
✓ Less maintenance, fewer errors
✓ Integration! Interoperability! Interchange!
✓ Extensible! Add characters as needed
✓ Multilingual: mix languages in documents
✓ Dynamically change languages

One Encoding,
Many Languages

Andrei Zmievski © 2005

Unicode Character Standard

✓ One encoding for worldwide use
✓ International Standard – ISO 10646
✓ Precisely defined

✓ Includes character properties/attributes
✓ Algorithms define exact behavior

✓ Widely supported by standards & industry
✓ HTML, XML, Java, Oracle, IBM, MySQL

Andrei Zmievski © 2005

Unicode Character Standard

✓ Required by Web & modern applications
✓ e,g, International Domain Names
✓ DOM

✓ Increasingly, users are not satisfied with incorrect
spellings, or restrictions to write their names,
addresses in ASCII or incompatible encodings

Andrei Zmievski © 2005

Unicode Overview

✓ Developed by the Unicode Consortium
✓ Covers all major living scripts
✓ Version 4.0 has 96,000+ characters
✓ Capacity for 1 million+ characters
✓ Unicode Character Set = ISO 10646

Andrei Zmievski © 2005

Unicode Character Set

✓ Code Points 0 to 10FFFF, (Maximum 21 Bits)
✓ Unicode notation for code point is U+hhhh
✓ 17 Planes of 64K (FFFF) code points

✓ Basic Multilingual Plane (BMP) U+0000-U+FFFF
✓ Commonly used characters in living scripts

✓ 1st Supplementary Plane (U+10000-U+1FFFF)
✓ archaic, fictional characters

✓ 2nd Supplementary Plane (U+20000-U+2FFFF)
✓ Ideographs

Andrei Zmievski © 2005

Unicode Character Set

Example Unicode Characters
Organized by scripts into blocks

Andrei Zmievski © 2005

Unicode is Generative
✓ Composition can create “new” characters
✓ Base + non-spacing (combining) character(s)

A + ˚ = Å
 U+0041 + U+030A = U+00C5

a + ˆ + . = ậ
 U+0061 + U+0302 + U+0323 = U+1EAD

a + . + ˆ = ậ
 U+0061 + U+0323 + U+0302 = U+1EAD

Andrei Zmievski © 2005

Unicode Characteristics

✓ Multilingual
✓ All scripts/languages, one character set

✓ Character Properties
✓ Case, digit, alpha/letter/ideogram, directional class,

mirroring, combining class, etc. provided by Unicode
✓ Logical order for bidirectional languages
✓ Round Trip Conversion To Legacy Encodings

✓ Byte Order Mark (BOM)
✓ Big vs. Little endian and encoding identifier

Andrei Zmievski © 2005

Unicode Characteristics

✓ 16 bit design originally
✓ Now has 3 equivalent forms

✓ UTF-8:8-bit variable width, multi-byte (max. 4)
✓ UTF-16: 16-bit, variable width, surrogates (max 2)
✓ UTF-32: 32-bit, fixed width (max 1)

✓ Design avoids multi-byte performance problems
✓ Algorithm specifications provide interoperability
✓ Allows one program image to be used worldwide
✓ Developers do not need to be linguists to implement

Andrei Zmievski © 2005

Definitions

✓ Abstract Character
✓ Unit of information used to organize, control, or represent

textual data.
✓ Code Point = Unicode Scalar Value

✓ The unique number assigned to each Unicode abstract
character

✓ Code Unit
✓ The code point mapped into basic architectural units (i.e. a

form size).

Andrei Zmievski © 2005

Abstract Character

✓ A unit of information used to organize, control, or
represent textual data.
✓ Has no concrete form, not to be confused with a glyph.
✓ May not correspond to users’ ideas of a “character”. Do not

confuse with grapheme.
✓ Abstract characters not directly encoded by the Unicode

Standard are often represented with combining character
sequences.

Andrei Zmievski © 2005

Abstract Character Example

✓ The character Å can be represented by two abstract
characters
✓ Latin Capital Letter A U+0041
✓ Combining Ring Above ˚ U+0301

Andrei Zmievski © 2005

Example Code Units

✓ This abstract character is U+233B4
✓ It’s code point is 233B4, independent of UTF

encoding
✓ In UTF-32 the code unit is 233B4
✓ In UTF-16 it has two 16-bit code units:

✓ D84C, DFB4 (high and low surrogates)
✓ In UTF-8, it has four 8-bit code units:

✓ F0, A3, 8E, B4

Andrei Zmievski © 2005

Summary

✓ Unicode is well-supported, ubiquitous, and often
required in integrated environments.

✓ Unicode simplifies working with different
languages

✓ But the large character set requires some
additional considerations

✓ Unicode requires removing assumptions that 1
character is 1 byte or word

Andrei Zmievski © 2005

Unicode != I18N

✓ Unicode simplifies development
✓ Single source code
✓ Enables multilingual processing
✓ Properties reduce research for each language

✓ Unicode does not fix all internationalization
✓ E.g. Date, time, number and other formats
✓ Linguistic processing can require additional algorithms,

data (e.g. word breaking)
✓ Still must identify, support cultural requirements
✓ Conversion to native encodings for interface to legacy

software, systems can impose limitations

Andrei Zmievski © 2005

Definitions
Internationalization

To design and develop an application:
✓� without built-in cultural assumptions

✓� that is efficient to localize

I18n

L10nLocalization

To tailor an application to meet the needs of a
particular region, market, or culture

Andrei Zmievski © 2005

Date Formats

✓ U.S.A.: 2/16/05
✓ France: 16.2.05 or 16-2-05
✓ Japan, China:� 2005年2月16日

Andrei Zmievski © 2005

Calendars

✓ Gregorian 2005
✓ Thailand: 2548 (Buddhist Year)
✓ Taiwan: 94 (1911-based)
✓ Hebrew 5765
✓ Also Hijri (Islamic), Lunar (Asia) and many

others

Andrei Zmievski © 2005

Time Formats

✓ U.S.A.: 4:00 P.M.
✓ France: 16.00
✓ Japan: 1600
✓ Don’t forget to identify the time zone

Andrei Zmievski © 2005

Number Formats

✓ England: 12,345.67
✓ Germany: 12.345,67
✓ Switzerland:� 12’345,67
✓ Swiss money:� 12’345.67
✓ France: 12 345,67
✓ India: 12,34,567.89

Andrei Zmievski © 2005

Curency
✓ Symbol placement
✓ Symbol length (1-15)
✓ Number width
✓ Number precision

✓ Spain, Japan 0
✓ Mexico, Brazil2
✓ Egypt, Iraq 3

Currency examples
US $12.34
12.345,67 €
12$34€
¥123

Andrei Zmievski © 2005

Capitalization

✓ Greece:� Σ σ (in the middle of a word)
✓ Greece:� Σ ς (at the end of a word)
✓ Turkey: � i İ, � ı I
✓ Germany:� ß SS (lower[SS]=ss)

Andrei Zmievski © 2005

Sorting

English: ABC...RSTUVWXYZ

German:� AÄB...NOÖ...SßTUÜV…YZ

Swedish/Finnish:� ABC...RSTUVWXYZÅÄÖ
✓ Languages may sort more than one way

✓ German dictionary vs. phone book
✓ Japanese stroke-radical vs. radical-stroke
✓ Traditional vs. modern Spanish

Andrei Zmievski © 2005

Collation Examples

✓ Swedish: � z < ö
✓ German: � ö < z
✓ Dictionary: � öf < of
✓ Phonebook: � of < öf
✓ Upper-first: A < a
✓ Lower-First:a < A
✓ Contractions:H < Z, but CH > CZ
✓ Expansions: � OE < Œ < OF

Andrei Zmievski © 2005

Normalization

✓ Equivalent strings are put into a single
standardized form

✓ Benefits
✓ Fast binary comparison
✓ Accurate digital signatures
✓ Clarifies “equivalence”

Andrei Zmievski © 2005

Motivation

✓ Increasingly globalized world
✓ Sites driven by PHP are seen by eyeballs from

many different countries
✓ Yet PHP has no intrinsic awareness of and

support for multilingual processing and i18n

Andrei Zmievski © 2005

Unicode and Competition

separate Unicode type

module for basic string
manipulation

basic regexp support

Python

Andrei Zmievski © 2005

Unicode and Competition

upgrades strings to Unicode
when needed

IO layer support

regexp support

higher level services are
available through CPAN

Python

Perl

Andrei Zmievski © 2005

Unicode and Competition

most complete Unicode
support

many i18n features

Python

Perl

Java

Andrei Zmievski © 2005

State of I18N in PHP

✓ Locale support based on POSIX
✓ mbstring extension attempts to solve certain issues
✓ Inherent problems remain

Andrei Zmievski © 2005

Unicode Support

✓ Native Unicode string type
✓ Unicode string literals
✓ Updated language semantics
✓ Relevant functions understand Unicode

Andrei Zmievski © 2005

ICU

✓ IBM Components for Unicode
✓ Why not our own solution?

✓ Lots of know-how is required
✓ Reinventing the wheel
✓ In the spirit of PHP: borrow when possible, invent

when needed, but solve the problem

Andrei Zmievski © 2005

Why ICU?
✓ It exists

✓ Full-featured

✓ Robust

✓ Fast

✓ Proven

✓ Portable

✓ Extensible

✓ Open Source

✓ Supported and maintained

Andrei Zmievski © 2005

ICU Features

✓� Unicode Character Properties
✓� Unicode String Class & text

processing
✓� Text transformations (normalization,

upper/lowercase, etc)
✓� Text Boundary Analysis (Character/

Word/Sentence Break Iterators)
✓� Encoding Conversions for 500+

legacy encodings
✓� Language-sensitive collation

(sorting) and searching
✓� Unicode regular expressions
✓� Thread-safe

✓� Formatting: Date/Time/Numbers/
Currency

✓� Cultural Calendars & Time Zones
✓� (230+) Locale handling
✓� Resource Bundles
✓� Transliterations (50+ script pairs)
✓� Complex Text Layout for Arabic,

Hebrew, Indic & Thai
✓� International Domain Names and

Web addresses
✓� Java model for locale-hierarchical

resource bundles. Multiple locales
can be used at a time

Andrei Zmievski © 2005

Goals

✓ Backwards compatibility!
✓ Making simple things easy and complex things

possible
✓ Concentrating on functionality first
✓ Achieving parity with Java’s Unicode support

Andrei Zmievski © 2005

Caveats

✓ Very preliminary look at the state of Unicode
support

✓ Many issues are still being discussed
✓ No public access to the code for now

Andrei Zmievski © 2005

Getting There

✓ Retrofitting the engine to support Unicode
✓ Making existing extensions Unicode-aware
✓ Exposing ICU API

Andrei Zmievski © 2005

Let There Be Unicode!

✓ Unicode should not be imposed on everyone
✓ Changing certain language semantics would make

development easier, however
✓ Solution: a control switch we’ll call unicode
✓ Per-request INI setting or declare() pragma
✓ No changes to program behavior unless enabled
✓ Does not imply no Unicode at all when disabled!

Andrei Zmievski © 2005

String Types

✓ Unicode: textual data (UTF-16 internally)
✓ Binary: binary data and strings meant to be

processed on the byte level
✓ Codepage: for backwards compatibility and

representing strings in a certain encoding

Andrei Zmievski © 2005

Creating Strings

✓ With unicode=off, string literals are
old‑fashioned 8-bit strings

✓ 1 character = 1 byte

$str = "hello world"; // ASCII string
echo strlen($str); // result is 11

$jp = "検索オプション"; // UTF-8 string

echo strlen($str); // result is 21

Andrei Zmievski © 2005

Creating Strings
✓ With unicode=on, string literals are Unicode
✓ 1 character may be > 1 byte

✓ To obtain length in bytes one would use a
separate function

// unicode = on
$str = "hello world"; // Unicode
echo strlen($str); // result is 11

$jp = "検索オプション"; // Unicode

echo strlen($str); // result is 7

Andrei Zmievski © 2005

Creating Strings
✓ Binary string literals require new syntax

$str = b'abcd';
$str = b"abc\xa0cd";
$str = b<<<EOD
 ab\x20cd
EOD;

Andrei Zmievski © 2005

Escape Sequences
✓ In Unicode strings \uXXXX and \UXXXXXX escape

sequences may be used to specify Unicode code
points explicitly

// these are equivalent
$str = "Hebrew letter alef: א";
$str = "Hebrew letter alef: \u05D0";

// so are these
$str = 'ideograph: 𠀋';
$str = 'ideograph: \U02000B';

Andrei Zmievski © 2005

Encodings

✓ Encodings are essential in specifying the format
for various Unicode-related operations

✓ PHP will have at least:
✓ runtime encoding
✓ script encoding
✓ output encoding
✓ http input encoding
✓ fallback encoding

Andrei Zmievski © 2005

Runtime Encoding
✓ Specifies what encoding to attach to codepage

strings generated at runtime

✓ Also used when interfacing with functions that do
not work with Unicode yet

// runtime_encoding = iso-8859-1

$uni = "Cinéma"; // Unicode
$str = (string)$str; // ISO-8859-1 string
$uni = (unicode)$uni; // back to Unicode

$str = long2ip(20747599); // $str is iso-8859-1

Andrei Zmievski © 2005

Script Encoding

✓ Currently, scripts are written in a variety of
encodings: ISO-8859-1, Shift-JIS, UTF-8, etc.

✓ Engine needs to know the encoding of a script in
order to parse it

✓ Encoding can be specified as INI setting or with
declare() pragma

✓ Affects how identifiers and string literals are
interpreted

Andrei Zmievski © 2005

Script Encoding
✓ Whatever the encoding of the script, the internal

type of the string is Unicode

// script_encoding = iso-8859-1
$uni = "øl"; // bytes are F8 6C

// script_encoding = utf-8
$uni = "øl"; // bytes are C3 B8 6C

Andrei Zmievski © 2005

Script Encoding
✓ Encoding can be also changed with a pragma
✓ Pragma does not propagate to included files

// script_encoding = utf-8

declare(encoding="iso-8859-1");
$uni = "øl"; // bytes are F8 6C

// the contents of file are read as UTF-8
include "myfile.php";

Andrei Zmievski © 2005

Output Encoding
✓ Specifies the encoding for the standard output

stream
✓ The script output is transcoded on the fly
✓ Does not affect binary strings

// output_encoding = utf-8
// script_encoding = iso-8859-1

$uni = "øl"; // input bytes are F8 6C
echo $uni; // output bytes are C3 B8 6C

echo b"øl"; // output bytes are F8 6C

Andrei Zmievski © 2005

Fallback Encoding

✓ The encoding is used when other encodings are
not specified explicitly

✓ Easy, one-stop configuration
✓ Defaults to UTF-8 if not set

Andrei Zmievski © 2005

Fallback Encoding
✓ If you work only with ISO-8859-2 data:

✓ With this setting script, runtime, and output
encodings are also ISO-8859-2 unless you
override them explicitly

fallback_encoding = iso-8859-2

Andrei Zmievski © 2005

Conversion Semantics

✓ Binary type cannot be converted to other string
types, via casting or implicitly

✓ Codepage strings can be freely converted to
Unicode, but no implicit conversions happen from
Unicode to codepage strings

✓ Both codepage strings and Unicode ones can be
cast to binary

Andrei Zmievski © 2005

Conversion Issues

✓ Not all characters can be converted between
Unicode and legacy encodings

✓ PHP will attempt to convert as much of the data
as possible and issue an error

✓ The conversion error behavior may be
customizable

Andrei Zmievski © 2005

Operator Support
✓ Concatenating a codepage string with Unicode

one requires upconverting it to Unicode

✓ Binary type cannot be concatenated with other
types

$str = foo(); // foo() returns a codepage string
$uni = "def"; // Unicode string
$res = $str . $uni; // result is Unicode

$res = b"abc" . "新着情報"; // runtime error!
$res = b"abc" . b"新着情報"; // OK
$res = b"abc" . (binary)"新着情報"; // OK, but different result

Andrei Zmievski © 2005

Operator Support
✓ String offset operator works on code points, not

bytes!

✓ No need to change existing code if working only
with single-byte encodings, like ASCII or
ISO- 8859-1

$str = "大学"; // bytes are e5 a4 a7 e5 ad a6

echo $str{1}; // result is 学
$str{0} = 'サ'; // string is now サ
 // bytes are e3 82 b5 e5 ad a6

Andrei Zmievski © 2005

Arrays

✓ Unicode and binary strings can be used as keys
✓ Unicode switch affects how lookup is done

✓ With unicode=on, codepage “abc” and Unicode
“abc” are equivalent for hash lookup purposes

✓ With unicode=off, they are distinct

Andrei Zmievski © 2005

Inline HTML

✓ HTML blocks are already in the output encoding
✓ Hence, they are treated as binary strings and

passed through

Andrei Zmievski © 2005

Functions

✓ Ideally, all functions should be upgraded to detect
the type of the string passed to them and do the
right thing

✓ This is a continuous process that will require
involvement from extension authors

Andrei Zmievski © 2005

Functions

✓ In order to ease the transition, some stop-gap
measures will be implemented

✓ If a Unicode string is passed to a function
expecting a legacy string, the engine will attempt
to convert Unicode to the runtime encoding

✓ The inverse happens for functions requiring
Unicode that are passed a legacy string

Andrei Zmievski © 2005

Functions

✓ Many Unicode operations may require additional
context

✓ Upgraded functions will use the most common
mode of operation, and leave the edge cases to
ICU API

✓ Consider strcasecmp()

Andrei Zmievski © 2005

Functions
✓ By default strcasecmp() would use default locale

and collation

✓ If you needed to compare strings using adjusted
collation parameters, you would use ICU API

if (strcasecmp($a, $b) == 0) {
 ...
}

$collator = ucol_open("fr_FR", ...);
ucol_setAttribute($collator, ...);
if (ucol_strcoll($collator, $a, $b) == 0) {
 ...
}

Andrei Zmievski © 2005

Stream IO

✓ When unicode switch is on, we cannot make any
assumptions about the type or encoding of the
data coming in from the streams

✓ Streams will be in binary mode by default

Andrei Zmievski © 2005

Stream IO
✓ Applications can manage Unicode conversion

itself themselves

✓ Or apply a conversion filter to the stream

$data = file_get_contents('mydata.txt');
$unidata = unicode_decode($data, 'EUC-JP');

$fp = fopen($file, 'rw');
stream_filter_append($fp, 'convert', 'EUC-JP');
// reads EUC-JP data and converts to Unicode
$data = fread($fp, 1024);
// converts Unicode to EUC-JP and writes it
fwrite($fp, $data);

Andrei Zmievski © 2005

Unicode Identifiers
✓ PHP will allow Unicode characters in identifiers
✓ Can have ideographic in addition to accented

characters

class コンポーネント {

 function コミット { .. }
}

$プロバイダ = array();
$プロバイダ[‘6עְיולוּחַ שָׁנ*ה’] = new コンポーネント();

Andrei Zmievski © 2005

HTTP Input

✓ Incoming content may or may not specify the
encoding it is in

✓ If not specified, PHP can use the
http_input_encoding setting to decode the data

✓ If the encoding is passed as an application request
variable, the application can call a function to
repopulate the request arrays based on this
encoding

Andrei Zmievski © 2005

Looking Forward

✓ Finalize base design and API
✓ Merge code into public CVS
✓ Help extension authors upgrade their functions
✓ Expose ICU services
✓ Optimize performance
✓ Document and educate

Andrei Zmievski © 2005

Thank You!
have a nice day

