
Andrei Zmievski © 2005

Say “Hello” to
PHP-GTK 2

Andrei Zmievski
Yahoo! Inc.



Andrei Zmievski © 2005

Agenda

Current State

Gtk+ Changes

PHP-GTK Changes

“Real Code” Example

Future Work



Andrei Zmievski © 2005

PHP-GTK

An extension interfacing with Gtk+ library

Born as an experiment

First release in 2001

Apparently tapped into existing demand



Andrei Zmievski © 2005

4 years later..

Many small and large applications

Small job market has evolved

PHP-GTK



Andrei Zmievski © 2005

Hindered by PHP 4’s object model

No proper object destruction

Crippled object overloading

PHP-GTK



Andrei Zmievski © 2005

Influenced development of PHP 5

Parameter parsing API

Partially provided motivation for new object model

PHP-GTK



Andrei Zmievski © 2005

PHP-GTK 2

Based on PHP 5.1 and Gtk+ 2.6

All the latest bells and whistles

Sets a baseline for future development

Both should be well entrenched by the time of first 
release of PHP-GTK 2



Andrei Zmievski © 2005

PHP-GTK 2

Almost a complete rewrite

Mostly backwards compatible

Compatibility broken when necessary

Documentation being rewritten as well



Andrei Zmievski © 2005

Meet PHP 5

Flexible and powerful object model

Finally has destructors!

Supports modern concepts such as exceptions, 
interfaces, overloading, etc

Has many hooks for extensibility



Andrei Zmievski © 2005

Meet Gtk+2

New flexible and powerful type system 

Good introspection and extensibility

Can be easily mapped onto PHP object model

Notice the pattern?



Andrei Zmievski © 2005

Unicode

All user text data is handled in UTF-8

Expects input to be the same

PHP-GTK handles conversion of input and output 
strings based on a global codepage setting

Once PHP 5.2 is out, native Unicode support will 
take over



Andrei Zmievski © 2005

Pango

An open-source framework for layout and 
rendering of i18n text

Has SGML-like markup language for modifying 
text attributes (font, size, etc)

Uses Unicode and platform-specific font systems



Andrei Zmievski © 2005

Gdk 2

Based on the new object system

Classes can have signals, properties, etc

Has double-buffering for smoooth rendering

Much better Win32 support



Andrei Zmievski © 2005

GdkPixbuf

Merged into GDK, not a separate library anymore

Supports image saving, as well as loading



Andrei Zmievski © 2005

ATK

A toolkit for adding accessibility to applications

Allows accessibility tools to navigate UI

Complete keyboard navigation for Gtk+

Nearly all key bindings are now customizable



Andrei Zmievski © 2005

Gtk 2

Many cool new widgets

Many deprecated widgets

API has been cleaned up



Andrei Zmievski © 2005

Deprecated Widgets

PHP-GTK 2 will issue a 
warning if you try to use a 
deprecated issue or method.

In most cases you will be 
referred to the new widget or 
method.

GtkList

GtkTree

GtkCList

GtkPixmap

GtkItemFactory

GtkOptionMenu

GtkProgress

GtkPreview

GtkCTree

GtkText



Andrei Zmievski © 2005

New stock item system

Has themeable stock icons

Application controls can have consistent and 
visually pleasing look

Possible to register custom stock icons that can be 
themed

Gtk 2



Andrei Zmievski © 2005

Provides foundation for data-driven widgets

Model is an abstract interface

Two models provided: list and tree store

Possible to write custom models

Model-View Architecture



Andrei Zmievski © 2005

List/Tree Widgets

Editable cells

Each cell is drawn by a cell renderer

Included renderers can draw text, image, 
checkbox, progress bar, and combo box

Possible to write custom cell renderers



Andrei Zmievski © 2005

List/Tree Widgets

Flexible sorting with custom sort functions

On-the-fly model filtering: hide/display rows based 
on some condition, restructure existing model, etc

Built-in drag-n-drop



Andrei Zmievski © 2005

Text Widget

Uses model-view architecture 

Full i18n support based on Pango engine

Display and editing of bidi and complex text



Andrei Zmievski © 2005

Text Widget

Mark objects allow “bookmarking” positions in the 
text

Text can have many complex attributes applied to 
it with tag objects: color, size, spacing

Also behavioral features such as editability



Andrei Zmievski © 2005

Text Widget

Selection drag-n-drop

Optional “side windows” allow display of 
additional information such as breakpoints, line 
numbers, etc

Hooks for implementing undo



Andrei Zmievski © 2005

New Widget Gallery



Andrei Zmievski © 2005

GtkTextView



Andrei Zmievski © 2005

GtkTextView



Andrei Zmievski © 2005

GtkTreeView



Andrei Zmievski © 2005

GtkMessageDialog

A convenience widget, 
displaying a message along 
with an informational icon.

Provides an easy way to 
display a message and get 
back user’s response.



Andrei Zmievski © 2005

GtkAboutDialog

Offers a simple way to display 
information about a program.

Allows for display of license 
and program credits.



Andrei Zmievski © 2005

GtkImage

A widget for easy display of 
various pictorial information.

Can display pixbufs, pixmaps, 
icons, stock items, animations.



Andrei Zmievski © 2005

GtkClipboard

Not a widget, but an object simplifying access to 
system clipboard.

Custom cut, copy, & paste actions are no longer 
out of reach.



Andrei Zmievski © 2005

GtkFontButton

Displays the currently 
selected font and allows to 
open a font selection dialog to 
change the font.



Andrei Zmievski © 2005

GtkFontSelectionDialog



Andrei Zmievski © 2005

GtkFileChooserButton

Displays current file name 
and allows opening a file 
selection dialog to change it.

File selection dialog can have 
custom preview widget.



Andrei Zmievski © 2005

GtkFileChooserDialog



Andrei Zmievski © 2005

GtkColorButton

Displays the currently 
selected color and allows 
opening a color selection 
dialog to change the color.



Andrei Zmievski © 2005

GtkColorSelectionDialog



Andrei Zmievski © 2005

GtkMenuToolButton

A tool button and a small 
additional button with an 
arrow. When clicked, the 
arrow button pops up a 
dropdown menu.



Andrei Zmievski © 2005

GtkComboBox

Uses model-view architecture, 
so that model and display can 
be customized.

Can display flat list or tree 
structure, for example.

GtkComboBoxEntry allows 
for editable text.



Andrei Zmievski © 2005

GtkUIManager

Provides a way to construct a 
user interface (menus and 
toolbars) from one or more 
XML UI definitions.

The most remarkable feature 
of is that it can overlay a set of 
menu items and tool items 
over another one, and de-
merge them later.

<ui>
  <menubar name='MenuBar'>
    <menu action='FileMenu'>
      <menuitem action='New'/>
      <menuitem action='Open'/>
      <menuitem action='Save'/>
      <menuitem action='SaveAs'/>
      <separator/>
      <menuitem action='Quit'/>
    </menu>
 ...



Andrei Zmievski © 2005

GtkIconView

Displays a list model as a grid 
of icons with labels.

Allows navigation and 
selection with arrows keys 
and rubber-band selection.



Andrei Zmievski © 2005

GtkExpander

Provides a way to hide and 
show a child widget by 
clicking on the expander 
triangle.



Andrei Zmievski © 2005

GtkEntryCompletion

Adds completion functionality 
to GtkEntry with custom 
layout and matching.

Can “remember” new entries 
and also display accelerator 
actions in the dropdown.



Andrei Zmievski © 2005

Stock Items



Andrei Zmievski © 2005

PHP-GTK 2 Changes

Backwards compatibility is mostly preserved.

But some incompatible changes may have to be 
introduced.

✓ internal extension name is ‘php-gtk’ instead of ‘gtk’

✓ shared library is called php_gtk2.so (dll)



Andrei Zmievski © 2005

PHP-GTK 2 Changes

Loading PHP-GTK with dl() is possible, but 
problems may result in some edge cases.

Loading via INI mechanism is preferable.

extension = php_gtk2.so



Andrei Zmievski © 2005

Use of Exceptions

PHP 5 supports exceptions, which we can take 
advantage of. The question is, what sort of 
conditions should generate an exception.

At the current point of development, exceptions 
are thrown:
✓ in object constructors on any sort of error

✓ in methods that use GError mechanism, such as 
GdkPixbuf::new_from_file()

✓ in codepage ⇔ UTF-8 conversions



Andrei Zmievski © 2005

Use of Exceptions

try { 
    $store = new GtkListStore(GdkPixbuf::gtype, Gtk::TYPE_PHP_OBJECT); 
} catch (PhpGtkConstructException $e) { 
    echo $e->message(); 
}

try { 
    $chooser = new GtkFileChooserWidget(); 
    $chooser->add_shortcut_folder($folder); 
} catch (PhpGtkGErrorException $e) { 
    die($e->message . "\n"); 
} 

Constructor Exceptions

GError Exceptions



Andrei Zmievski © 2005

Constants

Globals constants are no more. This is one of those 
incompatible changes.

Instead, all enumerations, flags, and other 
constants are partitioned by top-level module class: 
Gtk, Gdk, Pango, Atk and the extension ones.

GTK_STATE_PRELIGHT  Gtk::STATE_PRELIGHT 
GDK_2BUTTON_PRESS  Gdk::2BUTTON_PRESS 



Andrei Zmievski © 2005

Connecting to Signals

PHP-GTK 1 had two connection methods():

✓ connect()
✓ connect_object()

The latter one was semantically confusing and will 
be deprecated.

PHP-GTK will have three connection methods. 
All will take custom user parameters which are 
passed at the end.



Andrei Zmievski © 2005

Connecting to Signals
connect() - connect normally, passing signal 
widget and signal-specific parameters to callback

function on_inserted($entry, $start, $end, $my_data) 
{ ... } 

$entry = new GtkEntry(); 
$entry->connect('delete-text', 'on_inserted', true);



Andrei Zmievski © 2005

Connecting to Signals
connect_swapped() - substitute user-specified 
object instead of the signal one, and pass 
additional signal-specific parameters

function on_clicked($button) 
{ 
  // here $button is $button2 
}

$button1 = new GtkButton('Button 1'); 
$button2 = new GtkButton('Button 2'); 
$button1->connect_swapped('clicked', 'on_clicked', $button2);



Andrei Zmievski © 2005

Connecting to Signals
connect_simple() - do not pass signal object or 
signal parameters

function exit() 
{ 
    gtk::main_quit(); 
} 

$window = new GtkWindow(); 
$window->connect_simple('destroy', 'exit'); 
$button = new GtkButton('Quit'); 
$window->add($button);

// connect to built-in method 
$button->connect('clicked', array($window, 'destroy'));



Andrei Zmievski © 2005

PHP-GTK Fixes
In PHP-GTK 1, due to problems with the underlying 
object system, allocated memory could not be 
properly released at the end of object’s lifetime. Long-
running scripts could consume a lot of memory.

Now PHP’s object store is much more flexible and all 
these problems have been eradicated. Objects are 
destroyed as soon as they stop being used.

while (1) { 
    $pixbuf = GdkPixbuf::new_from_file($file); 
} 



Andrei Zmievski © 2005

PHP-GTK Fixes
PHP-GTK 1 required assigning objects 
instantiated with the new operator by reference, 
except for a few cases:

✓ using new in function parameters
✓ assigning to globals from inside functions
✓ assigning to object properties
✓ yuck!

Very confusing and prone to errors.

With PHP-GTK 2 you can use regular 
assignment.



Andrei Zmievski © 2005

PHP-GTK Fixes

In PHP-GTK 1, this example would result in hard 
error.

You had to do some code gymnastics.

Has been fixed in PHP 5. Even this works:

$text = $button->child->get_text();

$child = button->child; 
$text = $child->get_text();

$text = $button->get_child()->get_text();



Andrei Zmievski © 2005

“Real Code” Example

Let’s look at stock item browser demo, ported 
from PyGtk.

Illustrates some important principles of new 
model-view architecture behind behind lists, trees, 
and other widgets.

And also a good way to see what stock items are 
available.



Andrei Zmievski © 2005

“Real Code” Example
We need a class to store information about a stock 
item.

class StockItemInfo { 
    public $stock_id = ''; 
    public $stock_item = null; 
    public $small_icon = null; 
    public $constant = ''; 
    public $accel_str = '';
  ...
}



Andrei Zmievski © 2005

“Real Code” Example
We need to create a data model. We will have two 
columns in the model: a PHP object, and a string.

private function create_model() 
{ 
  $store = new GtkListStore(Gtk::TYPE_PHP_VALUE, Gtk::TYPE_STRING); 
  ...



Andrei Zmievski © 2005

“Real Code” Example
Now we iterate through all the stock IDs and 
lookup information such as their icons and 
associated accelerators.

ids = Gtk::stock_list_ids(); 
sort($ids); 

foreach ($ids as $id) { 
    $info = new StockItemInfo($id);
    $stock_item = Gtk::stock_lookup($id);
...
    $info->small_icon = $this->render_icon($info->stock_id, $size);
...
    $info->accel_str = '<'.Gtk::accelerator_get_label($info-
>stock_item[3], $info->stock_item[2]).'>';
...



Andrei Zmievski © 2005

“Real Code” Example
Then we insert the information into the data store. 
We do this using ‘iterators’.

// still in create_model()

    $iter = $store->append(); 
    $store->set($iter, 0, $info, 1, $id);
  } // end foreach()

  return $store;
}



Andrei Zmievski © 2005

“Real Code” Example
Once we have the model, we can create the widget 
that will display it.

model = $this->create_model(); 
$treeview = new GtkTreeView($model);



Andrei Zmievski © 2005

“Real Code” Example
The view widget will display “columns” of data. 
Each column can display one or more fields from 
the model.

$column = new GtkTreeViewColumn(); 
$column->set_title('Icon and Constant');



Andrei Zmievski © 2005

“Real Code” Example
The actual rendering of data is done by a cell 
renderer. The first column of our view will display 
the stock item icon and the constant used to access 
it.

$cell_renderer = new GtkCellRendererPixbuf(); 
$column->pack_start($cell_renderer, false); 
$column->set_attributes($cell_renderer, 'stock-id', 1);



Andrei Zmievski © 2005

“Real Code” Example
Setting attributes is not the only way to give the data 
to the renderer.

Finally, we append the column to the view.

$cell_renderer = new GtkCellRendererText(); 
$column->pack_start($cell_renderer, true); 
$column->set_cell_data_func($cell_renderer, 'constant_setter');

function constant_setter($column, $cell, $model, $iter) 
{ 
    $info = $model->get_value($iter, 0); 
    $cell->set_property('text', $info->constant); 
} 

$treeview->append_column($column);



Andrei Zmievski © 2005

“Real Code” Example
The rest of the columns will display a single piece 
of information, so we use a shortcut.

$cell_renderer = new GtkCellRendererText(); 
$treeview->insert_column_with_data_func(-1, 'Label',
    $cell_renderer, 'label_setter'); 

$cell_renderer = new GtkCellRendererText(); 
$treeview->insert_column_with_data_func(-1, 'Accelerator',
    $cell_renderer, 'accel_setter'); 

$cell_renderer = new GtkCellRendererText(); 
$treeview->insert_column_with_data_func(-1, 'ID', $cell_renderer,
    'id_setter'); 



Andrei Zmievski © 2005

“Real Code” Example
We’d like to do something when user clicks on a 
row, so we set up a selection object.

$selection = $treeview->get_selection(); 
$selection->set_mode(Gtk::SELECTION_SINGLE); 

$selection->connect('changed',
                    array($this, 'on_selection_changed'));

function on_selection_changed($selection) 
{ 
    $treeview = $selection->get_tree_view(); 
    list($model, $iter) = $selection->get_selected();
    if ($iter) {
       // something is selected 
    } else { 
       // no selection 
    }
}



Andrei Zmievski © 2005

“Real Code” Example
That’s it! Now you know enough to be dangerous.



Andrei Zmievski © 2005

Distribution

Most of distribution mechanism efforts have 
focused on Windows.

NSIS

SetupStream32

PriadoBlender

RoadSend?



Andrei Zmievski © 2005

Future

API Completeness

Providing abilities to:
✓ write custom models and cell renderers
✓ creating new custom widgets with signals and 

properties
✓ override virtual methods
✓ implement interfaces

Performance optimizations

And much more



Andrei Zmievski © 2005

Thank You!
have a nice day


