
all the little pieces
distributed systems with PHP

Andrei Zmievski @ Digg
Dutch PHP Conference @ Amsterdam

Friday, June 12, 2009

Who is this guy?

• Open Source Fellow @ Digg

• PHP Core Developer since 1999

• Architect of the Unicode/i18n support

• Release Manager for PHP 6

• Twitter: @a

• Beer lover (and brewer)

Friday, June 12, 2009

Why distributed?

• Because Moore’s Law will not save you

• Despite what DHH says

Friday, June 12, 2009

Share nothing

• Your Mom was wrong

• No shared data on application servers

• Distribute it to shared systems

Friday, June 12, 2009

distribute…

• memory (memcached)

• storage (mogilefs)

• work (gearman)

Friday, June 12, 2009

Building blocks

• GLAMMP - have you heard of it?

• Gearman + LAMP + Memcached

• Throw in Mogile too

Friday, June 12, 2009

memcached
Friday, June 12, 2009

background

• created by Danga Interactive

• high-performance, distributed
memory object caching system

• sustains Digg, Facebook, LiveJournal,
Yahoo!, and many others

• if you aren’t using it, you are crazy

Friday, June 12, 2009

background

• Very fast over the network and very
easy to set up

• Designed to be transient

• You still need a database

Friday, June 12, 2009

architecture

client

client

client

memcached

memcached

memcached

Friday, June 12, 2009

architecture

memcached

Friday, June 12, 2009

slab #1

slab #2

slab #3

slab #4

152
bytes

152
bytes

456 bytes

1368 bytes

152
bytes

4104 bytes

152
bytes

152
bytes

456 bytes456 bytes

1368 bytes

Friday, June 12, 2009

memory architecture

• memory allocated on startup,
released on shutdown

• variable sized slabs (30+ by default)

• each object is stored in the slab most
fitting its size

• fragmentation can be problematic

Friday, June 12, 2009

memory architecture

• items are deleted:

• on set

• on get, if it’s expired

• if slab is full, then use LRU

Friday, June 12, 2009

applications

• object cache

• output cache

• action flood control / rate limiting

• simple queue

• and much more

Friday, June 12, 2009

PHP clients

• a few private ones (Facebook, Yahoo!,
etc)

• pecl/memcache

• pecl/memcached

Friday, June 12, 2009

pecl/memcached

• based on libmemcached

• released in January 2009

• surface API similarity to pecl/
memcache

• parity with other languages

Friday, June 12, 2009

• get

• set

• add

• replace

• delete

• append

• prepend

• cas

• *_by_key

• getMulti

• setMulti

• getDelayed / fetch*

• callbacks

API

Friday, June 12, 2009

consistent hashing

A

B

IP2-1

IP1

IP3

IP2-2

Friday, June 12, 2009

compare-and-swap (cas)

• “check and set”

• no update if object changed

• relies on CAS token

Friday, June 12, 2009

compare-and-swap (cas)
$m = new Memcached();
$m->addServer('localhost', 11211);

do {
 $ips = $m->get('ip_block', null, $cas);

 if ($m->getResultCode() == Memcached::RES_NOTFOUND) {

 $ips = array($_SERVER['REMOTE_ADDR']);
 $m->add('ip_block', $ips);

 } else {

 $ips[] = $_SERVER['REMOTE_ADDR'];
 $m->cas($cas, 'ip_block', $ips);
 }

} while ($m->getResultCode() != Memcached::RES_SUCCESS);

Friday, June 12, 2009

delayed “lazy” fetching

• issue request with getDelayed()

• do other work

• fetch results with fetch() or
fetchAll()

Friday, June 12, 2009

binary protocol

• performance
• every request is parsed
• can happen thousands times a

second

• extensibility

• support more data in the protocol

Friday, June 12, 2009

callbacks

• read-through cache callback

• if key is not found, invoke callback,
save value to memcache and return it

Friday, June 12, 2009

callbacks

• result callback

• invoked by getDelayed() for every
found item

• should not call fetch() in this case

Friday, June 12, 2009

buffered writes

• queue up write requests

• send when a threshold is exceeded or
a ‘get’ command is issued

Friday, June 12, 2009

key prefixing

• optional prefix prepended to all the
keys automatically

• allows for namespacing, versioning,
etc.

Friday, June 12, 2009

key locality

• allows mapping a set of keys to a
specific server

Friday, June 12, 2009

multiple serializers

• PHP

• igbinary

• JSON (soon)

Friday, June 12, 2009

future

• UDP support

• replication

• server management (ejection, status
callback)

Friday, June 12, 2009

tips & tricks

• 32-bit systems with > 4GB memory:

memcached -m4096 -p11211
memcached -m4096 -p11212
memcached -m4096 -p11213

Friday, June 12, 2009

tips & tricks

• write-through or write-back cache

• Warm up the cache on code push

• Version the keys (if necessary)

Friday, June 12, 2009

tips & tricks

• Don’t think row-level DB-style
caching; think complex objects

• Don’t run memcached on your DB
server — your DBAs might send you
threatening notes

• Use multi-get — run things in parallel

Friday, June 12, 2009

delete by namespace

1 $ns_key = $memcache->get("foo_namespace_key");
2 // if not set, initialize it
3 if ($ns_key === false)
4 $memcache->set("foo_namespace_key",
5 rand(1, 10000));
6 // cleverly use the ns_key
7 $my_key = "foo_".$ns_key."_12345";
8 $my_val = $memcache->get($my_key);
9 // to clear the namespace:
10 $memcache->increment("foo_namespace_key");

Friday, June 12, 2009

storing lists of data

• Store items under indexed keys:
comment.12, comment.23, etc

• Then store the list of item IDs in
another key: comments

• To retrieve, fetch comments and then
multi-get the comment IDs

Friday, June 12, 2009

preventing stampeding

• embedded probabilistic timeout

• gearman unique task trick

Friday, June 12, 2009

optimization

• watch stats (eviction rate, fill, etc)

• getStats()

• telnet + “stats” commands

• peep (heap inspector)

Friday, June 12, 2009

slabs

• Tune slab sizes to your needs:

• -f chunk size growth factor (default
1.25)

• -n minimum space allocated for key
+value+flags (default 48)

Friday, June 12, 2009

slabs

slab class 1: chunk size 104 perslab 10082
slab class 2: chunk size 136 perslab 7710
slab class 3: chunk size 176 perslab 5957
slab class 4: chunk size 224 perslab 4681
...
slab class 38: chunk size 394840 perslab 2
slab class 39: chunk size 493552 perslab 2

Default: 38 slabs

Friday, June 12, 2009

slabs

slab class 1: chunk size 1048 perslab 1000
slab class 2: chunk size 1064 perslab 985
slab class 3: chunk size 1080 perslab 970
slab class 4: chunk size 1096 perslab 956
...
slab class 198: chunk size 9224 perslab 113
slab class 199: chunk size 9320 perslab 112

Most objects: ∼1-2KB, some larger

memcached -n 1000 -f 1.01

Friday, June 12, 2009

memcached @ digg

Friday, June 12, 2009

ops

• memcached on each app server (2GB)

• the process is niced to a lower level

• separate pool for sessions

• 2 servers keep track of cluster health

Friday, June 12, 2009

key prefixes

• global key prefix for apc, memcached,
etc

• each pool has additional, versioned
prefix: .sess.2

• the key version is incremented on
each release

• global prefix can invalidate all caches

Friday, June 12, 2009

cache chain

• multi-level caching: globals, APC,
memcached, etc.

• all cache access is through
Cache_Chain class

• various configurations:
• APC ➡ memcached
• $GLOBALS ➡ APC

Friday, June 12, 2009

other

• large objects (> 1MB)

• split on the client side

• save the partial keys in a master one

Friday, June 12, 2009

stats

Friday, June 12, 2009

alternatives

• in-memory: Tokyo Tyrant, Scalaris

• persistent: Hypertable, Cassandra,
MemcacheDB

• document-oriented: CouchDB

Friday, June 12, 2009

mogile
Friday, June 12, 2009

background

• created by Danga Interactive

• application-level distributed
filesystem

• used at Digg, LiveJournal, etc

• a form of “cloud caching”

• scales very well

Friday, June 12, 2009

background

• automatic file replication with custom
policies

• no single point of failure

• flat namespace

• local filesystem agnostic

• not meant for speed

Friday, June 12, 2009

architecture

tracker

nodeapp tracker
DB

node

node

node

tracker

node

Friday, June 12, 2009

applications

• images

• document storage

• backing store for certain caches

Friday, June 12, 2009

PHP client

• File_Mogile in PEAR

• MediaWiki one (not maintained)

Friday, June 12, 2009

Example

$hosts = array('172.10.1.1', '172.10.1.2');
$m = new File_Mogile($hosts, 'profiles');
$m->storeFile('user1234', 'image',
 '/tmp/image1234.jpg');

...

$paths = $m->getPaths('user1234');

Friday, June 12, 2009

mogile @ digg

Friday, June 12, 2009

mogile @ digg

• Wrapper around File_Mogile to cache
entries in memcache

• fairly standard set-up

• trackers run on storage nodes

Friday, June 12, 2009

mogile @ digg

• not huge (about 3.5 TB of data)

• files are replicated 3x

• the user profile images are cached on
Netscaler (1.5 GB cache)

• mogile cluster load is light

Friday, June 12, 2009

gearman
Friday, June 12, 2009

background

• created by Danga Interactive

• anagram of “manager”

• a system for distributing work

• a form of RPC mechanism

Friday, June 12, 2009

background

• parallel, asynchronous, scales well

• fire and forget, decentralized

• avoid tying up Apache processes

Friday, June 12, 2009

background

• dispatch function calls to machines
that are better suited to do work

• do work in parallel

• load balance lots of function calls

• invoke functions in other languages

Friday, June 12, 2009

architecture

gearmandclient

workerclient

client

worker

worker

Friday, June 12, 2009

applications

• thumbnail generation

• asynchronous logging

• cache warm-up

• DB jobs, data migration

• sending email

Friday, June 12, 2009

servers

• Gearman-Server (Perl)

• gearmand (C)

Friday, June 12, 2009

clients

• Net_Gearman

• simplified, pretty stable

• pecl/gearman

• more powerful, complex, somewhat
unstable (under development)

Friday, June 12, 2009

Concepts

• Job

• Worker

• Task

• Client

Friday, June 12, 2009

Net_Gearman

• Net_Gearman_Job

• Net_Gearman_Worker

• Net_Gearman_Task

• Net_Gearman_Set

• Net_Gearman_Client

Friday, June 12, 2009

Echo Job

class Net_Gearman_Job_Echo extends Net_Gearman_Job_Common
{
 public function run($arg)
 {
 var_export($arg);
 echo "\n";
 }
} Echo.php

Friday, June 12, 2009

Reverse Job
class Net_Gearman_Job_Reverse extends Net_Gearman_Job_Common
{
 public function run($arg)
 {
 $result = array();
 $n = count($arg);
 $i = 0;
 while ($value = array_pop($arg)) {
 $result[] = $value;
 $i++;
 $this->status($i, $n);
 }

 return $result;
 }
} Reverse.php

Friday, June 12, 2009

Worker

define('NET_GEARMAN_JOB_PATH', './');

require 'Net/Gearman/Worker.php';

try {
 $worker = new Net_Gearman_Worker(array('localhost:4730'));
 $worker->addAbility('Reverse');
 $worker->addAbility('Echo');
 $worker->beginWork();
} catch (Net_Gearman_Exception $e) {
 echo $e->getMessage() . "\n";
 exit;
}

Friday, June 12, 2009

Client

require_once 'Net/Gearman/Client.php';

function complete($job, $handle, $result) {
 echo "$job complete, result: ".var_export($result,
true)."\n";
}

function status($job, $handle, $n, $d)
{
 echo "$n/$d\n";
} continued..

Friday, June 12, 2009

Client

$client = new Net_Gearman_Client(array('lager:4730'));

$task = new Net_Gearman_Task('Reverse', range(1,5));
$task->attachCallback("complete",Net_Gearman_Task::TASK_COMPLETE);
$task->attachCallback("status",Net_Gearman_Task::TASK_STATUS);

continued..

Friday, June 12, 2009

Client

$set = new Net_Gearman_Set();
$set->addTask($task);

$client->runSet($set);

$client->Echo('Mmm... beer');

Friday, June 12, 2009

pecl/gearman

• More complex API

• Jobs aren’t separated into files

Friday, June 12, 2009

Worker
$gmworker= new gearman_worker();
$gmworker->add_server();
$gmworker->add_function("reverse", "reverse_fn");

while (1)
{
 $ret= $gmworker->work();
 if ($ret != GEARMAN_SUCCESS)
 break;
}

function reverse_fn($job)
{
 $workload= $job->workload();
 echo "Received job: " . $job->handle() . "\n";
 echo "Workload: $workload\n";
 $result= strrev($workload);
 echo "Result: $result\n";
 return $result;
}

Friday, June 12, 2009

Client

$gmclient= new gearman_client();

$gmclient->add_server('lager');

echo "Sending job\n";

list($ret, $result) = $gmclient->do("reverse", "Hello!");

if ($ret == GEARMAN_SUCCESS)
 echo "Success: $result\n";

Friday, June 12, 2009

gearman @ digg

Friday, June 12, 2009

gearman @ digg

• 400,000 jobs a day

• Jobs: crawling, DB job, FB sync,
memcache manipulation, Twitter
post, IDDB migration, etc.

• Each application server has its own
Gearman daemon + workers

Friday, June 12, 2009

tips and tricks

• you can daemonize the workers easily
with daemon or supervisord

• run workers in different groups, don’t
block on job A waiting on job B

• Make workers exit after N jobs to free
up memory (supervisord will restart
them)

Friday, June 12, 2009

Thrift
Friday, June 12, 2009

background

• NOT developed by Danga (Facebook)

• cross-language services

• RPC-based

Friday, June 12, 2009

background

• interface description language

• bindings: C++, C#, Cocoa, Erlang,
Haskell, Java, OCaml, Perl, PHP,
Python, Ruby, Smalltalk

• data types: base, structs, constants,
services, exceptions

Friday, June 12, 2009

IDL

Friday, June 12, 2009

Demo

Friday, June 12, 2009

Thank You

http://gravitonic.com/talks
Friday, June 12, 2009

http://gravitonic.com/talks
http://gravitonic.com/talks

